Reservoir controllers design though robot-reservoir timescale alignment.

Fan Ye, Arsen Abdulali, Kai-Fung Chu, Xiaoping Zhang, Fumiya Iida
{"title":"Reservoir controllers design though robot-reservoir timescale alignment.","authors":"Fan Ye, Arsen Abdulali, Kai-Fung Chu, Xiaoping Zhang, Fumiya Iida","doi":"10.1038/s44172-025-00418-1","DOIUrl":null,"url":null,"abstract":"<p><p>Natural behavior emerging in nonlinear dynamical systems enables reservoir computers to control underactuated robots by approximating their inverse dynamics. Unlike other model-free approaches, the reservoir controllers are sample-efficient, meaning a weighted average of the reservoir output can be trained with a limited amount of pre-recorded data. However, developing and testing the reservoir controller relies on repetitive experiments that require researchers' proficiency in both robot and reservoir design. In this paper, we propose a design method for reliable reservoir controllers by synchronizing the timescales of the reservoir dynamics with those observed in the robot. The results demonstrate that our timescale alignment test filters out 99% of ineffective reservoirs. We further applied the selected reservoirs to computational tasks including short-term memory and parity checks, along with control tasks involving robot trajectory tracking. Our findings reveal that a higher computational capability reduces the control failure rate, though it concurrently increases the trajectory-tracking error.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"81"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00418-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Natural behavior emerging in nonlinear dynamical systems enables reservoir computers to control underactuated robots by approximating their inverse dynamics. Unlike other model-free approaches, the reservoir controllers are sample-efficient, meaning a weighted average of the reservoir output can be trained with a limited amount of pre-recorded data. However, developing and testing the reservoir controller relies on repetitive experiments that require researchers' proficiency in both robot and reservoir design. In this paper, we propose a design method for reliable reservoir controllers by synchronizing the timescales of the reservoir dynamics with those observed in the robot. The results demonstrate that our timescale alignment test filters out 99% of ineffective reservoirs. We further applied the selected reservoirs to computational tasks including short-term memory and parity checks, along with control tasks involving robot trajectory tracking. Our findings reveal that a higher computational capability reduces the control failure rate, though it concurrently increases the trajectory-tracking error.

通过机器人-油藏时间尺度对齐来设计油藏控制器。
非线性动力系统中出现的自然行为使水库计算机能够通过近似其逆动力学来控制欠驱动机器人。与其他无模型方法不同,储层控制器具有样本效率,这意味着可以使用有限数量的预记录数据来训练储层输出的加权平均值。然而,开发和测试储层控制器依赖于重复的实验,这需要研究人员精通机器人和储层设计。在本文中,我们提出了一种设计可靠的水库控制器的方法,该方法将水库动力学的时间尺度与机器人中观察到的时间尺度同步。结果表明,我们的时间尺度对准试验滤除了99%的无效储层。我们进一步将选择的库应用于计算任务,包括短期记忆和奇偶校验,以及涉及机器人轨迹跟踪的控制任务。我们的研究结果表明,较高的计算能力降低了控制故障率,但同时也增加了轨迹跟踪误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信