{"title":"EfficientNet-Based Attention Residual U-Net With Guided Loss for Breast Tumor Segmentation in Ultrasound Images","authors":"Heena Jasrotia, Chandan Singh, Sukhjeet Kaur","doi":"10.1016/j.ultrasmedbio.2025.03.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Breast cancer poses a major health concern for women globally. Effective segmentation of breast tumors for ultrasound images is crucial for early diagnosis and treatment. Conventional convolutional neural networks have shown promising results in this domain but face challenges due to image complexities and are computationally expensive, limiting their practical application in real-time clinical settings.</div></div><div><h3>Methods</h3><div>We propose Eff-AResUNet-GL, a segmentation model using EfficienetNet-B3 as the encoder. This design integrates attention gates in skip connections to focus on significant features and residual blocks in the decoder to retain details and reduce gradient loss. Additionally, guided loss functions are applied at each decoder layer to generate better features, subsequently improving segmentation accuracy.</div></div><div><h3>Results</h3><div>Experimental results on BUSIS and Dataset B demonstrate that Eff-AResUNet-GL achieves superior performance and computational efficiency compared to state-of-the-art models, showing robustness in handling complex breast ultrasound images.</div></div><div><h3>Conclusion</h3><div>Eff-AResUNet-GL offers a practical, high-performing solution for breast tumor segmentation, demonstrating potential clinical through improved segmentation accuracy and efficiency.</div></div>","PeriodicalId":49399,"journal":{"name":"Ultrasound in Medicine and Biology","volume":"51 7","pages":"Pages 1112-1123"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasound in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301562925000882","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Breast cancer poses a major health concern for women globally. Effective segmentation of breast tumors for ultrasound images is crucial for early diagnosis and treatment. Conventional convolutional neural networks have shown promising results in this domain but face challenges due to image complexities and are computationally expensive, limiting their practical application in real-time clinical settings.
Methods
We propose Eff-AResUNet-GL, a segmentation model using EfficienetNet-B3 as the encoder. This design integrates attention gates in skip connections to focus on significant features and residual blocks in the decoder to retain details and reduce gradient loss. Additionally, guided loss functions are applied at each decoder layer to generate better features, subsequently improving segmentation accuracy.
Results
Experimental results on BUSIS and Dataset B demonstrate that Eff-AResUNet-GL achieves superior performance and computational efficiency compared to state-of-the-art models, showing robustness in handling complex breast ultrasound images.
Conclusion
Eff-AResUNet-GL offers a practical, high-performing solution for breast tumor segmentation, demonstrating potential clinical through improved segmentation accuracy and efficiency.
期刊介绍:
Ultrasound in Medicine and Biology is the official journal of the World Federation for Ultrasound in Medicine and Biology. The journal publishes original contributions that demonstrate a novel application of an existing ultrasound technology in clinical diagnostic, interventional and therapeutic applications, new and improved clinical techniques, the physics, engineering and technology of ultrasound in medicine and biology, and the interactions between ultrasound and biological systems, including bioeffects. Papers that simply utilize standard diagnostic ultrasound as a measuring tool will be considered out of scope. Extended critical reviews of subjects of contemporary interest in the field are also published, in addition to occasional editorial articles, clinical and technical notes, book reviews, letters to the editor and a calendar of forthcoming meetings. It is the aim of the journal fully to meet the information and publication requirements of the clinicians, scientists, engineers and other professionals who constitute the biomedical ultrasonic community.