{"title":"Lattice-based stochastic models motivate non-linear diffusion descriptions of memory-based dispersal.","authors":"Yifei Li, Matthew J Simpson, Chuncheng Wang","doi":"10.1007/s00285-025-02211-2","DOIUrl":null,"url":null,"abstract":"<p><p>The role of memory and cognition in the movement of individuals (e.g. animals) within a population, is thought to play an important role in population dispersal. In response, there has been increasing interest in incorporating spatial memory effects into classical partial differential equation (PDE) models of animal dispersal. However, the specific detail of the transport terms, such as diffusion and advection terms, that ought to be incorporated into PDE models to accurately reflect the memory effect remains unclear. To bridge this gap, we propose a straightforward lattice-based model where the movement of individuals depends on both crowding effects and the historic distribution within the simulation. The advantage of working with the individual-based model is that it is straightforward to propose and implement memory effects within the simulation in a way that is more biologically intuitive than simply proposing heuristic extensions of classical PDE models. Through deriving the continuum limit description of our stochastic model, we obtain a novel nonlinear diffusion equation which encompasses memory-based diffusion terms. For the first time we reveal the relationship between memory-based diffusion and the individual-based movement mechanisms that depend upon memory effects. Through repeated stochastic simulation and numerical explorations of the mean-field PDE model, we show that the new PDE model accurately describes the expected behaviour of the stochastic model, and we also explore how memory effects impact population dispersal.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 5","pages":"52"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02211-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The role of memory and cognition in the movement of individuals (e.g. animals) within a population, is thought to play an important role in population dispersal. In response, there has been increasing interest in incorporating spatial memory effects into classical partial differential equation (PDE) models of animal dispersal. However, the specific detail of the transport terms, such as diffusion and advection terms, that ought to be incorporated into PDE models to accurately reflect the memory effect remains unclear. To bridge this gap, we propose a straightforward lattice-based model where the movement of individuals depends on both crowding effects and the historic distribution within the simulation. The advantage of working with the individual-based model is that it is straightforward to propose and implement memory effects within the simulation in a way that is more biologically intuitive than simply proposing heuristic extensions of classical PDE models. Through deriving the continuum limit description of our stochastic model, we obtain a novel nonlinear diffusion equation which encompasses memory-based diffusion terms. For the first time we reveal the relationship between memory-based diffusion and the individual-based movement mechanisms that depend upon memory effects. Through repeated stochastic simulation and numerical explorations of the mean-field PDE model, we show that the new PDE model accurately describes the expected behaviour of the stochastic model, and we also explore how memory effects impact population dispersal.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.