{"title":"Of Typewriters and PCs: How the Complication of Computers Limits Us and What to Do About It","authors":"Federico Pigozzi","doi":"10.1162/artl_a_00472","DOIUrl":null,"url":null,"abstract":"PCs are complicated. Yet, being generally more effective, they have replaced typewriters in everyday life. Because of their complications, many of us wonder at PCs as if they were mysterious ghosts in the machine: entities with powers we cannot explain or control, almost supernatural. I analyze how this increase in technological complication may be limiting our society at two levels, one economic and one scientific, and I discuss how the field of Artificial Life (ALife) can attempt to rescue it. At the economic level, there is evidence that computers, being complicated, slow labor productivity rather than increasing it (e.g., maintenance, malware, distractions). Computers are also the subject of debate surrounding technological unemployment and elite overproduction. I advocate for ALife to focus on minimally intrusive developments to our everyday work and to occupy unfilled economic niches, like xenobots or bacterial biofilms. At the scientific level, the surge in artificial intelligence has resulted in many complex algorithms that mimic the cognition happening in brains: Even their creators struggle to make sense of them. I advocate for ALife to focus more on basal forms of cognition, cognition that requires as little “brain” as possible, potentially none—algorithms that think through their bodies, stripped of any superfluous complications, just like typewriters. Ultimately, my goal is for the reader to ask themselves what values should drive ALife.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"31 2","pages":"195-210"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11007778/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
PCs are complicated. Yet, being generally more effective, they have replaced typewriters in everyday life. Because of their complications, many of us wonder at PCs as if they were mysterious ghosts in the machine: entities with powers we cannot explain or control, almost supernatural. I analyze how this increase in technological complication may be limiting our society at two levels, one economic and one scientific, and I discuss how the field of Artificial Life (ALife) can attempt to rescue it. At the economic level, there is evidence that computers, being complicated, slow labor productivity rather than increasing it (e.g., maintenance, malware, distractions). Computers are also the subject of debate surrounding technological unemployment and elite overproduction. I advocate for ALife to focus on minimally intrusive developments to our everyday work and to occupy unfilled economic niches, like xenobots or bacterial biofilms. At the scientific level, the surge in artificial intelligence has resulted in many complex algorithms that mimic the cognition happening in brains: Even their creators struggle to make sense of them. I advocate for ALife to focus more on basal forms of cognition, cognition that requires as little “brain” as possible, potentially none—algorithms that think through their bodies, stripped of any superfluous complications, just like typewriters. Ultimately, my goal is for the reader to ask themselves what values should drive ALife.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.