Yongxin Yan, Yan Nie, Xiaoshuai Gao, Xiaoyu Yan, Yuanyuan Ji, Junling Li, Hong Li
{"title":"Pollution Characterization and Environmental Impact Evaluation of Atmospheric Intermediate Volatile Organic Compounds: A Review.","authors":"Yongxin Yan, Yan Nie, Xiaoshuai Gao, Xiaoyu Yan, Yuanyuan Ji, Junling Li, Hong Li","doi":"10.3390/toxics13040318","DOIUrl":null,"url":null,"abstract":"<p><p>Atmospheric intermediate volatile organic compounds (IVOCs) are important precursors of secondary organic aerosols (SOAs), and in-depth research on them is crucial for atmospheric pollution control. This review systematically synthesizes global advancements in understanding IVOC sources, emissions characterization, compositional characteristics, ambient concentrations, SOA contributions, and health risk assessments. IVOCs include long-chain alkanes (C<sub>12</sub>~C<sub>22</sub>), sesquiterpenes, polycyclic aromatic hydrocarbons, monocyclic aromatic hydrocarbons, phenolic compounds, ketones, esters, organic acids, and heterocyclic compounds, which originate from primary emissions and secondary formation. Primary emissions include direct emissions from anthropogenic and biogenic sources, while secondary formation mainly results from radical reactions or particulate surface reactions. Recently, the total IVOC emissions have decreased in some countries, while emissions from certain sources, such as volatile chemical products, have increased. Ambient IVOC concentrations are generally higher in urban rather than in rural areas, higher indoors than outdoors, and on land rather than over oceans. IVOCs primarily generate SOAs via oxidation reactions with hydroxyl radicals, nitrate radicals, the ozone, and chlorine atoms, which contribute more to SOAs than traditional VOCs, with higher SOA yields. SOA tracers for IVOC species like naphthalene and β-caryophyllene have been identified. Integrating IVOC emissions into regional air quality models could significantly improve SOA simulation accuracy. The carcinogenic risk posed by naphthalene should be prioritized, while benzo[a]pyrene requires a combined risk assessment and hierarchical management. Future research should focus on developing high-resolution online detection technologies for IVOCs, clarifying the multiphase reaction mechanisms involved and SOA tracers, and conducting comprehensive human health risk assessments.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13040318","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric intermediate volatile organic compounds (IVOCs) are important precursors of secondary organic aerosols (SOAs), and in-depth research on them is crucial for atmospheric pollution control. This review systematically synthesizes global advancements in understanding IVOC sources, emissions characterization, compositional characteristics, ambient concentrations, SOA contributions, and health risk assessments. IVOCs include long-chain alkanes (C12~C22), sesquiterpenes, polycyclic aromatic hydrocarbons, monocyclic aromatic hydrocarbons, phenolic compounds, ketones, esters, organic acids, and heterocyclic compounds, which originate from primary emissions and secondary formation. Primary emissions include direct emissions from anthropogenic and biogenic sources, while secondary formation mainly results from radical reactions or particulate surface reactions. Recently, the total IVOC emissions have decreased in some countries, while emissions from certain sources, such as volatile chemical products, have increased. Ambient IVOC concentrations are generally higher in urban rather than in rural areas, higher indoors than outdoors, and on land rather than over oceans. IVOCs primarily generate SOAs via oxidation reactions with hydroxyl radicals, nitrate radicals, the ozone, and chlorine atoms, which contribute more to SOAs than traditional VOCs, with higher SOA yields. SOA tracers for IVOC species like naphthalene and β-caryophyllene have been identified. Integrating IVOC emissions into regional air quality models could significantly improve SOA simulation accuracy. The carcinogenic risk posed by naphthalene should be prioritized, while benzo[a]pyrene requires a combined risk assessment and hierarchical management. Future research should focus on developing high-resolution online detection technologies for IVOCs, clarifying the multiphase reaction mechanisms involved and SOA tracers, and conducting comprehensive human health risk assessments.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.