THEMIS2 contributes to ovarian cancer metastasis via DOCK4-mediated activation of Rap1 signaling.

IF 4.8 2区 医学 Q2 CELL BIOLOGY
Cellular Oncology Pub Date : 2025-08-01 Epub Date: 2025-04-14 DOI:10.1007/s13402-025-01057-6
Kaixia Zhou, Xiaolu Ma, Tianqing Yan, Ling Hu, Yanan Tian, Hui Zheng, Suhong Xie, Ying Tong, Yanchun Wang, Lin Guo, Renquan Lu
{"title":"THEMIS2 contributes to ovarian cancer metastasis via DOCK4-mediated activation of Rap1 signaling.","authors":"Kaixia Zhou, Xiaolu Ma, Tianqing Yan, Ling Hu, Yanan Tian, Hui Zheng, Suhong Xie, Ying Tong, Yanchun Wang, Lin Guo, Renquan Lu","doi":"10.1007/s13402-025-01057-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Ovarian cancer (OC) is the most lethal gynecological malignancy, with widespread metastasis and ascites being the leading causes of patient mortality. However, the mechanisms driving OC metastasis have not been sufficiently studied. This study aimed to investigate the mechanisms and key molecules promoting OC metastasis.</p><p><strong>Methods: </strong>Public databases (StemChecker, GeneCards, GEO, and TCGA) were screened to identify metastasis-associated genes. Immunohistochemical staining and western blotting were employed to evaluate THEMIS2 expression and epithelial-mesenchymal transition (EMT) marker profiles across experimental groups. RNA sequencing coupled with pathway enrichment analysis revealed THEMIS2-regulated signaling pathways, while immunoprecipitation-mass spectrometry was utilized to identify THEMIS2 interaction partners. GST pull-down assays for active Rap1 quantified Rap1-GTP levels under varying THEMIS2 expression conditions. Wound healing and transwell invasion assays respectively assessed migratory and invasive capacities of OC cells following THEMIS2 expression perturbations in vitro. Abdominal cavity implantation metastasis model was established to evaluate OC cell colonization and invasive potential in vivo.</p><p><strong>Results: </strong>THEMIS2 expression is significantly elevated in OC tissues compared to normal ovarian tissues, and its high expression correlates with poor prognosis and malignant features. Experimental manipulation of THEMIS2 levels revealed that knockdown impended the migratory and invasive capacities of OC cells both in vitro and in vivo, while its overexpression exacerbated metastasis. THEMIS2 is involved in EMT and cytoskeleton rearrangement. RNA-seq analysis revealed that THEMIS2 positively correlates with Rap1 signaling pathway. Inhibition of Rap1 activity reversed the metastasis-promoting effects induced by THEMIS2 overexpression both in vitro and in vivo. Mechanistically, we uncovered that THEMIS2 functions as a molecular scaffold that recruits TBK1 (TANK Binding Kinase 1) to DOCK4 (Dedicator of Cytokinesis 4), facilitating site-specific phosphorylation at serine 1787 (S1787). This post-translational modification enables DOCK4 to engage with CRKII, subsequently triggering Rap1 signaling activation. These findings suggest that THEMIS2 promotes the metastatic potential of OC cells via DOCK4-mediated activation of Rap1 signaling.</p><p><strong>Conclusion: </strong>THEMIS2 may serve as a predictive biomarker for OC prognosis, and targeting the Rap1 signaling pathway with specific inhibitors represents a promising therapeutic strategy for OC treatment.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"961-978"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01057-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Ovarian cancer (OC) is the most lethal gynecological malignancy, with widespread metastasis and ascites being the leading causes of patient mortality. However, the mechanisms driving OC metastasis have not been sufficiently studied. This study aimed to investigate the mechanisms and key molecules promoting OC metastasis.

Methods: Public databases (StemChecker, GeneCards, GEO, and TCGA) were screened to identify metastasis-associated genes. Immunohistochemical staining and western blotting were employed to evaluate THEMIS2 expression and epithelial-mesenchymal transition (EMT) marker profiles across experimental groups. RNA sequencing coupled with pathway enrichment analysis revealed THEMIS2-regulated signaling pathways, while immunoprecipitation-mass spectrometry was utilized to identify THEMIS2 interaction partners. GST pull-down assays for active Rap1 quantified Rap1-GTP levels under varying THEMIS2 expression conditions. Wound healing and transwell invasion assays respectively assessed migratory and invasive capacities of OC cells following THEMIS2 expression perturbations in vitro. Abdominal cavity implantation metastasis model was established to evaluate OC cell colonization and invasive potential in vivo.

Results: THEMIS2 expression is significantly elevated in OC tissues compared to normal ovarian tissues, and its high expression correlates with poor prognosis and malignant features. Experimental manipulation of THEMIS2 levels revealed that knockdown impended the migratory and invasive capacities of OC cells both in vitro and in vivo, while its overexpression exacerbated metastasis. THEMIS2 is involved in EMT and cytoskeleton rearrangement. RNA-seq analysis revealed that THEMIS2 positively correlates with Rap1 signaling pathway. Inhibition of Rap1 activity reversed the metastasis-promoting effects induced by THEMIS2 overexpression both in vitro and in vivo. Mechanistically, we uncovered that THEMIS2 functions as a molecular scaffold that recruits TBK1 (TANK Binding Kinase 1) to DOCK4 (Dedicator of Cytokinesis 4), facilitating site-specific phosphorylation at serine 1787 (S1787). This post-translational modification enables DOCK4 to engage with CRKII, subsequently triggering Rap1 signaling activation. These findings suggest that THEMIS2 promotes the metastatic potential of OC cells via DOCK4-mediated activation of Rap1 signaling.

Conclusion: THEMIS2 may serve as a predictive biomarker for OC prognosis, and targeting the Rap1 signaling pathway with specific inhibitors represents a promising therapeutic strategy for OC treatment.

THEMIS2通过dock4介导的Rap1信号激活参与卵巢癌转移。
目的:卵巢癌(OC)是最致命的妇科恶性肿瘤,其广泛的转移和腹水是患者死亡的主要原因。然而,对卵巢癌转移的机制研究尚不充分。本研究旨在探讨促进卵巢癌转移的机制和关键分子。方法:筛选公共数据库(StemChecker、GeneCards、GEO和TCGA)以鉴定转移相关基因。免疫组织化学染色和western blotting检测实验组THEMIS2表达和上皮-间质转化(EMT)标志物谱。RNA测序结合途径富集分析揭示了THEMIS2调控的信号通路,而免疫沉淀-质谱法用于鉴定THEMIS2相互作用伙伴。活性Rap1的GST下拉试验定量了不同THEMIS2表达条件下Rap1- gtp的水平。伤口愈合和跨井侵袭实验分别评估了体外表达干扰后OC细胞的迁移和侵袭能力。建立腹腔移植转移模型,评估OC细胞在体内的定植和侵袭潜力。结果:与卵巢正常组织相比,卵巢癌组织中THEMIS2的表达明显升高,且其高表达与预后差及恶性特征相关。对THEMIS2水平的实验操作表明,在体外和体内,敲低抑制了OC细胞的迁移和侵袭能力,而其过表达则加剧了转移。THEMIS2参与EMT和细胞骨架重排。RNA-seq分析显示THEMIS2与Rap1信号通路呈正相关。在体外和体内,抑制Rap1活性逆转了THEMIS2过表达诱导的转移促进作用。从机制上讲,我们发现THEMIS2作为分子支架将TBK1 (TANK Binding Kinase 1)招募到DOCK4 (Cytokinesis 4的奉献者),促进丝氨酸1787位点特异性磷酸化(S1787)。这种翻译后修饰使DOCK4与CRKII结合,随后触发Rap1信号激活。这些发现表明THEMIS2通过dock4介导的Rap1信号激活促进OC细胞的转移潜能。结论:THEMIS2可作为OC预后的预测性生物标志物,使用特异性抑制剂靶向Rap1信号通路是OC治疗的一种有前景的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular Oncology
Cellular Oncology ONCOLOGY-CELL BIOLOGY
CiteScore
10.30
自引率
1.50%
发文量
86
审稿时长
12 months
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信