{"title":"Synergistic healing of diabetic wounds through photothermal and peroxidase-like activity of heterogeneous Bi2S3/Au nanoparticles†","authors":"Zilin Zhou, Lihui Meng, Yanru Hu, Meng Wang, Shuojie Cui, Panwen Liu, Yilin Yang, Zebin Chen and Qingzhi Wu","doi":"10.1039/D5TB00446B","DOIUrl":null,"url":null,"abstract":"<p >Bacterial resistance and biofilm formation around diabetic wounds are major challenges that make the wounds difficult to heal. It is crucial for diabetic wound healing to improve the microenvironment around the wounds. In this study, a novel strategy for diabetic wound healing is developed by combining the peroxidase (POD)-like enzyme activity and photothermal therapy (PTT) to protect against bacterial infections around the wounds. Heterogeneous bismuth sulfide/gold nanoparticles (Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/Au NPs) are synthesized through a two-step wet chemical route. Results show that Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/Au nanozymes display high POD-like enzyme activity and can effectively convert H<small><sub>2</sub></small>O<small><sub>2</sub></small> into ˙OH. The antibacterial rate against <em>S. aureus</em> and <em>E. coli</em> bacteria is 99.8 ± 0.03% and 99.9 ± 0.01%, respectively, in the presence of H<small><sub>2</sub></small>O<small><sub>2</sub></small> under near-infrared light (NIR) irradiation. Animal experiments on infected diabetic wounds demonstrate that the synergistic actions of the Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/Au NPs significantly inhibit the formation of biofilms caused by bacteria, and promote the deposition of collagen and the formation of epithelial and dermal tissue. This study provides a promising solution for innovative therapy of refractory diabetic wounds, which is of great significance for reducing the abuse of antibiotics and the production of drug-resistant bacteria.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 20","pages":" 5820-5831"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00446b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial resistance and biofilm formation around diabetic wounds are major challenges that make the wounds difficult to heal. It is crucial for diabetic wound healing to improve the microenvironment around the wounds. In this study, a novel strategy for diabetic wound healing is developed by combining the peroxidase (POD)-like enzyme activity and photothermal therapy (PTT) to protect against bacterial infections around the wounds. Heterogeneous bismuth sulfide/gold nanoparticles (Bi2S3/Au NPs) are synthesized through a two-step wet chemical route. Results show that Bi2S3/Au nanozymes display high POD-like enzyme activity and can effectively convert H2O2 into ˙OH. The antibacterial rate against S. aureus and E. coli bacteria is 99.8 ± 0.03% and 99.9 ± 0.01%, respectively, in the presence of H2O2 under near-infrared light (NIR) irradiation. Animal experiments on infected diabetic wounds demonstrate that the synergistic actions of the Bi2S3/Au NPs significantly inhibit the formation of biofilms caused by bacteria, and promote the deposition of collagen and the formation of epithelial and dermal tissue. This study provides a promising solution for innovative therapy of refractory diabetic wounds, which is of great significance for reducing the abuse of antibiotics and the production of drug-resistant bacteria.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices