A CRISPR-nonhomologous end-joining-based strategy for rapid and efficient gene disruption in Mycobacterium abscessus.

IF 4.5 Q1 MICROBIOLOGY
mLife Pub Date : 2025-04-23 eCollection Date: 2025-04-01 DOI:10.1002/mlf2.70007
Sanshan Zeng, Yanan Ju, Md Shah Alam, Ziwen Lu, H M Adnan Hameed, Lijie Li, Xirong Tian, Cuiting Fang, Xiange Fang, Jie Ding, Xinyue Wang, Jinxing Hu, Shuai Wang, Tianyu Zhang
{"title":"A CRISPR-nonhomologous end-joining-based strategy for rapid and efficient gene disruption in <i>Mycobacterium abscessus</i>.","authors":"Sanshan Zeng, Yanan Ju, Md Shah Alam, Ziwen Lu, H M Adnan Hameed, Lijie Li, Xirong Tian, Cuiting Fang, Xiange Fang, Jie Ding, Xinyue Wang, Jinxing Hu, Shuai Wang, Tianyu Zhang","doi":"10.1002/mlf2.70007","DOIUrl":null,"url":null,"abstract":"<p><p><i>Mycobacterium abscessus</i>, a fast-growing, non-tuberculous mycobacterium resistant to most antimicrobial drugs, causes a wide range of serious infections in humans, posing a significant public health challenge. The development of effective genetic manipulation tools for <i>M. abscessus</i> is still in progress, limiting both research and therapeutic advancements. However, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) systems have emerged as promising tools for generating highly specific double-strand breaks (DSBs) in its genome. One of the mechanisms that repair these DSBs is the error-prone nonhomologous end-joining (NHEJ) pathway, which facilitates targeted gene editing. In this study, we introduced a novel application of the CRISPR-NHEJ approach in <i>M. abscessus</i>. We demonstrated that NrgA from <i>M. marinum</i> plays a crucial role in repairing DSBs induced by the CRISPR-Cas system in <i>M. abscessus</i>. Contrary to previous findings, our study also revealed that inhibiting or overexpressing components of homologous recombination/single-strand annealing significantly reduces the efficiency of NHEJ repair in <i>M. abscessus</i>. This discovery challenges current perspectives and suggests that NHEJ repair in <i>M. abscessus</i> may involve components from both homologous recombination and single-strand annealing pathways, highlighting the complex interactions among the three DSB repair mechanisms in <i>M. abscessus</i>.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":"4 2","pages":"169-180"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.70007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacterium abscessus, a fast-growing, non-tuberculous mycobacterium resistant to most antimicrobial drugs, causes a wide range of serious infections in humans, posing a significant public health challenge. The development of effective genetic manipulation tools for M. abscessus is still in progress, limiting both research and therapeutic advancements. However, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) systems have emerged as promising tools for generating highly specific double-strand breaks (DSBs) in its genome. One of the mechanisms that repair these DSBs is the error-prone nonhomologous end-joining (NHEJ) pathway, which facilitates targeted gene editing. In this study, we introduced a novel application of the CRISPR-NHEJ approach in M. abscessus. We demonstrated that NrgA from M. marinum plays a crucial role in repairing DSBs induced by the CRISPR-Cas system in M. abscessus. Contrary to previous findings, our study also revealed that inhibiting or overexpressing components of homologous recombination/single-strand annealing significantly reduces the efficiency of NHEJ repair in M. abscessus. This discovery challenges current perspectives and suggests that NHEJ repair in M. abscessus may involve components from both homologous recombination and single-strand annealing pathways, highlighting the complex interactions among the three DSB repair mechanisms in M. abscessus.

基于crispr -非同源末端连接的策略快速有效地破坏脓肿分枝杆菌的基因。
脓肿分枝杆菌是一种生长迅速的非结核分枝杆菌,对大多数抗菌素药物具有耐药性,在人类中引起广泛的严重感染,对公共卫生构成重大挑战。有效的脓肿分枝杆菌基因操作工具的开发仍在进行中,限制了研究和治疗的进步。然而,聚集规律间隔短回文重复(CRISPR)相关蛋白(Cas)系统已成为在其基因组中产生高度特异性双链断裂(DSBs)的有前途的工具。修复这些dsb的机制之一是易出错的非同源末端连接(NHEJ)途径,它促进了靶向基因编辑。在这项研究中,我们介绍了一种新的CRISPR-NHEJ方法在脓肿分枝杆菌中的应用。我们证明了来自海洋分枝杆菌的NrgA在修复由CRISPR-Cas系统诱导的脓肿分枝杆菌的DSBs中起着至关重要的作用。与之前的研究结果相反,我们的研究还发现,抑制或过表达同源重组/单链退火组分会显著降低脓肿分枝杆菌NHEJ修复的效率。这一发现挑战了目前的观点,并表明脓肿分枝杆菌的NHEJ修复可能涉及同源重组和单链退火途径的成分,突出了脓肿分枝杆菌中三种DSB修复机制之间复杂的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信