{"title":"Biochemical basis of resistance toward maize insect pests of different feeding guild and their inter-guild interactions.","authors":"Feby Atee, Soundararajan Raga Palanisamy, Murugan Marimuthu, Srinivasan Thulasy, Ravikesavan Rajasekaran, Senthil Natesan","doi":"10.1007/s00425-025-04697-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>Biochemical compounds and signaling molecules act as direct and indirect defenses against maize pests of different guilds and crucial for natural enemies' interactions. Maize (Zea mays L.) is an important multipurpose cereal crop that contributes to global feed and food demands and is persistently under the attack of several pests of different feeding guilds. However, concerns over the drawbacks of extensive pesticide use in natural ecosystems, including health hazards and the need for cost-effective pest control strategies, are growing. Wide opportunities are available to harness native plant resistance and natural enemies for insect pest management. In this context, it is critical to understand the biochemical basis of maize genotype resistance to insects from various feeding guilds as well as their inter-guild interactions. The critical role of various herbivore-induced plant volatiles (HIPVs) in mediating tritrophic interactions between maize plants, insect pests, and their natural enemies should be considered when developing strategies for pest management. This review synthesizes the important maize defense systems against different feeding guild pests, shedding light on recent progress and insights into the long-recognized maize defense compounds. In addition to the tritrophic interactions facilitated by HIPVs in the maize ecosystem, there has also been a focus on examining the impacts of inter-guild interactions resulting from damage caused by pests from varying feeding guilds on indirect defense systems mediated by maize plants.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"261 6","pages":"129"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-025-04697-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Main conclusion: Biochemical compounds and signaling molecules act as direct and indirect defenses against maize pests of different guilds and crucial for natural enemies' interactions. Maize (Zea mays L.) is an important multipurpose cereal crop that contributes to global feed and food demands and is persistently under the attack of several pests of different feeding guilds. However, concerns over the drawbacks of extensive pesticide use in natural ecosystems, including health hazards and the need for cost-effective pest control strategies, are growing. Wide opportunities are available to harness native plant resistance and natural enemies for insect pest management. In this context, it is critical to understand the biochemical basis of maize genotype resistance to insects from various feeding guilds as well as their inter-guild interactions. The critical role of various herbivore-induced plant volatiles (HIPVs) in mediating tritrophic interactions between maize plants, insect pests, and their natural enemies should be considered when developing strategies for pest management. This review synthesizes the important maize defense systems against different feeding guild pests, shedding light on recent progress and insights into the long-recognized maize defense compounds. In addition to the tritrophic interactions facilitated by HIPVs in the maize ecosystem, there has also been a focus on examining the impacts of inter-guild interactions resulting from damage caused by pests from varying feeding guilds on indirect defense systems mediated by maize plants.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.