Adaptive Run-Length Encoded DCT: A High-Fidelity Compression Algorithm for Real-Time Photoacoustic Microscopy Imaging in LabVIEW.

IF 2.3
Mohsin Zafar, Kamran Avanaki
{"title":"Adaptive Run-Length Encoded DCT: A High-Fidelity Compression Algorithm for Real-Time Photoacoustic Microscopy Imaging in LabVIEW.","authors":"Mohsin Zafar, Kamran Avanaki","doi":"10.1002/jbio.70043","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous photoacoustic microscopy (PAM) imaging generates large volumes of data, resulting in significant storage demands. Here, we propose a high-fidelity real-time compression algorithm for PAM data in LabVIEW by combining Discrete Cosine Transform (DCT) with adaptive thresholding and Run Length Encoding (RLE), which we term Adaptive Run Length Encoded DCT (AR-DCT) compression. This algorithm reduces data storage requirements while preserving all the details of the images. AR-DCT ensures real-time compression, achieving superior compression ratios (CRs) compared to traditional DCT compression. We evaluated the performance of AR-DCT using in vivo mouse brain imaging data, demonstrating a CR of ~50, with a structural similarity index of 0.980 and minimal degradation in signal quality (percentage-root-mean-square-difference of 1.345%). The results show that AR-DCT outperforms traditional DCT, offering higher compression efficiency without significantly sacrificing image quality. These findings suggest that AR-DCT provides an effective solution for applications requiring continuous experiments, such as cerebral hemodynamics studies.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e70043"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.70043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous photoacoustic microscopy (PAM) imaging generates large volumes of data, resulting in significant storage demands. Here, we propose a high-fidelity real-time compression algorithm for PAM data in LabVIEW by combining Discrete Cosine Transform (DCT) with adaptive thresholding and Run Length Encoding (RLE), which we term Adaptive Run Length Encoded DCT (AR-DCT) compression. This algorithm reduces data storage requirements while preserving all the details of the images. AR-DCT ensures real-time compression, achieving superior compression ratios (CRs) compared to traditional DCT compression. We evaluated the performance of AR-DCT using in vivo mouse brain imaging data, demonstrating a CR of ~50, with a structural similarity index of 0.980 and minimal degradation in signal quality (percentage-root-mean-square-difference of 1.345%). The results show that AR-DCT outperforms traditional DCT, offering higher compression efficiency without significantly sacrificing image quality. These findings suggest that AR-DCT provides an effective solution for applications requiring continuous experiments, such as cerebral hemodynamics studies.

自适应运行长度编码DCT:一种用于实时光声显微镜成像的高保真压缩算法。
连续光声显微镜(PAM)成像产生大量的数据,导致显著的存储需求。在LabVIEW中,我们提出了一种高保真的PAM数据实时压缩算法,该算法将离散余弦变换(DCT)与自适应阈值和运行长度编码(RLE)相结合,我们称之为自适应运行长度编码DCT (AR-DCT)压缩。该算法减少了数据存储需求,同时保留了图像的所有细节。AR-DCT确保实时压缩,与传统的DCT压缩相比,实现了更高的压缩比(CRs)。我们使用活体小鼠脑成像数据评估AR-DCT的性能,显示CR为~50,结构相似指数为0.980,信号质量下降最小(百分比-均方根差为1.345%)。结果表明,AR-DCT优于传统的DCT,在不显著牺牲图像质量的情况下提供更高的压缩效率。这些发现表明AR-DCT为脑血流动力学研究等需要连续实验的应用提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信