{"title":"Research on CT image segmentation and classification of liver tumors based on attention mechanism and improved U-Net model.","authors":"Guang Mei, Jinhua Yu","doi":"10.1177/09287329251329294","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundLiver cancer is still one of the most common causes of death from cancer globally. The accurate segmentation of liver tumors from CT images is critical for diagnosis, treatment planning, and tracking. Conventional segmentation techniques frequently struggle to handle the intricacy of medical images, requiring the usage of sophisticated artificial intelligence (AI) methods to enhance accuracy and effectiveness.ObjectiveThe main objective of this study is to create and test an improved U-Net model (AM-UNet) that incorporates an attention mechanism to enhance the segmentation and classification accuracy of liver tumors in CT images. This method seeks to surpass previous techniques in terms of accuracy, precision, recall, and F1 score.MethodsThe dataset used includes 194 liver tumor CT scans obtained from 131 individuals for training and 70 for testing. The open-source 3DIRCAD-B dataset, which is incorporated into LiTS, contains images of both normal and pathological conditions. Preprocessing methods such as Median Filtering (MF) and Histogram Equalization (HE) were used to reduce noise and improve contrast. The AM-UNet model was then used to segment the tumors before classifying them as malignant or benign. The efficiency was assessed utilizing metrics like accuracy, precision, recall, F1-score, and ROC (Receiver Operating Characteristic).ResultsThe suggested AM-UNet model produced excellent outcomes, with a recall of 95%, accuracy of 92%, precision of 94%, and an F1-score of 93%. These metrics show that the model outperforms conventional techniques in correctly segmenting and classifying liver tumors in CT images.ConclusionThe AM-UNet model improves the segmentation and classification of liver tumors, providing substantial performance metrics over traditional methods. Its utilization can transform liver cancer diagnosis by assisting physicians in accurate tumor identification and treatment planning, resulting in improved patient results.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"2468-2483"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329251329294","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundLiver cancer is still one of the most common causes of death from cancer globally. The accurate segmentation of liver tumors from CT images is critical for diagnosis, treatment planning, and tracking. Conventional segmentation techniques frequently struggle to handle the intricacy of medical images, requiring the usage of sophisticated artificial intelligence (AI) methods to enhance accuracy and effectiveness.ObjectiveThe main objective of this study is to create and test an improved U-Net model (AM-UNet) that incorporates an attention mechanism to enhance the segmentation and classification accuracy of liver tumors in CT images. This method seeks to surpass previous techniques in terms of accuracy, precision, recall, and F1 score.MethodsThe dataset used includes 194 liver tumor CT scans obtained from 131 individuals for training and 70 for testing. The open-source 3DIRCAD-B dataset, which is incorporated into LiTS, contains images of both normal and pathological conditions. Preprocessing methods such as Median Filtering (MF) and Histogram Equalization (HE) were used to reduce noise and improve contrast. The AM-UNet model was then used to segment the tumors before classifying them as malignant or benign. The efficiency was assessed utilizing metrics like accuracy, precision, recall, F1-score, and ROC (Receiver Operating Characteristic).ResultsThe suggested AM-UNet model produced excellent outcomes, with a recall of 95%, accuracy of 92%, precision of 94%, and an F1-score of 93%. These metrics show that the model outperforms conventional techniques in correctly segmenting and classifying liver tumors in CT images.ConclusionThe AM-UNet model improves the segmentation and classification of liver tumors, providing substantial performance metrics over traditional methods. Its utilization can transform liver cancer diagnosis by assisting physicians in accurate tumor identification and treatment planning, resulting in improved patient results.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).