{"title":"Towards proactively improving sleep: machine learning and wearable device data forecast sleep efficiency 4-8 hours before sleep onset.","authors":"Collin Sakal, Tong Chen, Wenxin Xu, Wei Zhang, Yu Yang, Xinyue Li","doi":"10.1093/sleep/zsaf113","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable devices with sleep tracking functionalities can prompt behavioral changes to promote sleep, but proactively preventing poor sleep when it is likely to occur remains a challenge due to a lack of prediction models that can forecast sleep parameters prior to sleep onset. We developed models that forecast low sleep efficiency 4 and 8 hours prior to sleep onset using gradient boosting (CatBoost) and deep learning (Convolutional Neural Network Long Short-Term Memory, CNN-LSTM) algorithms trained exclusively on accelerometer data from 80,811 adults in the UK Biobank. Associations of various sleep and activity parameters with sleep efficiency were further examined. During repeated cross-validation, both CatBoost and CNN-LSTM exhibited excellent predictive performance (median AUCs > 0.90, median AUPRCs > 0.79). U-shaped relationships were observed between total activity within 4 and 8 hours of sleep onset and low sleep efficiency. Functional data analyses revealed higher activity 6 to 8 hours prior to sleep onset had negligible associations with sleep efficiency. Higher activity 4 to 6 hours prior had moderate beneficial associations, while higher activity within 4 hours had detrimental associations. Additional analyses showed that increased variability in sleep duration, efficiency, onset timing, and offset timing over the preceding four days was associated with lower sleep efficiency. Our study represents a first step towards wearable-based machine learning systems that proactively prevent poor sleep by demonstrating that sleep efficiency can be accurately forecasted prior to bedtime and by identifying pre-bed activity targets for subsequent intervention.</p>","PeriodicalId":22018,"journal":{"name":"Sleep","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsaf113","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable devices with sleep tracking functionalities can prompt behavioral changes to promote sleep, but proactively preventing poor sleep when it is likely to occur remains a challenge due to a lack of prediction models that can forecast sleep parameters prior to sleep onset. We developed models that forecast low sleep efficiency 4 and 8 hours prior to sleep onset using gradient boosting (CatBoost) and deep learning (Convolutional Neural Network Long Short-Term Memory, CNN-LSTM) algorithms trained exclusively on accelerometer data from 80,811 adults in the UK Biobank. Associations of various sleep and activity parameters with sleep efficiency were further examined. During repeated cross-validation, both CatBoost and CNN-LSTM exhibited excellent predictive performance (median AUCs > 0.90, median AUPRCs > 0.79). U-shaped relationships were observed between total activity within 4 and 8 hours of sleep onset and low sleep efficiency. Functional data analyses revealed higher activity 6 to 8 hours prior to sleep onset had negligible associations with sleep efficiency. Higher activity 4 to 6 hours prior had moderate beneficial associations, while higher activity within 4 hours had detrimental associations. Additional analyses showed that increased variability in sleep duration, efficiency, onset timing, and offset timing over the preceding four days was associated with lower sleep efficiency. Our study represents a first step towards wearable-based machine learning systems that proactively prevent poor sleep by demonstrating that sleep efficiency can be accurately forecasted prior to bedtime and by identifying pre-bed activity targets for subsequent intervention.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.