Homotopy Relaxation Training Algorithms for Infinite-Width Two-Layer ReLU Neural Networks.

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Journal of Scientific Computing Pub Date : 2025-02-01 Epub Date: 2025-01-03 DOI:10.1007/s10915-024-02761-5
Yahong Yang, Qipin Chen, Wenrui Hao
{"title":"Homotopy Relaxation Training Algorithms for Infinite-Width Two-Layer ReLU Neural Networks.","authors":"Yahong Yang, Qipin Chen, Wenrui Hao","doi":"10.1007/s10915-024-02761-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a novel training approach called the Homotopy Relaxation Training Algorithm (HRTA), aimed at accelerating the training process in contrast to traditional methods. Our algorithm incorporates two key mechanisms: one involves building a homotopy activation function that seamlessly connects the linear activation function with the <math><mi>R</mi> <mi>e</mi> <mi>L</mi> <mi>U</mi></math> activation function; the other technique entails relaxing the homotopy parameter to enhance the training refinement process. We have conducted an in-depth analysis of this novel method within the context of the neural tangent kernel (NTK), revealing significantly improved convergence rates. Our experimental results, especially when considering networks with larger widths, validate the theoretical conclusions. This proposed HRTA exhibits the potential for other activation functions and deep neural networks.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"102 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02761-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel training approach called the Homotopy Relaxation Training Algorithm (HRTA), aimed at accelerating the training process in contrast to traditional methods. Our algorithm incorporates two key mechanisms: one involves building a homotopy activation function that seamlessly connects the linear activation function with the R e L U activation function; the other technique entails relaxing the homotopy parameter to enhance the training refinement process. We have conducted an in-depth analysis of this novel method within the context of the neural tangent kernel (NTK), revealing significantly improved convergence rates. Our experimental results, especially when considering networks with larger widths, validate the theoretical conclusions. This proposed HRTA exhibits the potential for other activation functions and deep neural networks.

无限宽双层ReLU神经网络的同伦松弛训练算法。
在本文中,我们提出了一种新的训练方法,称为同伦松弛训练算法(HRTA),旨在加速与传统方法相比的训练过程。我们的算法包含两个关键机制:一是建立一个同伦激活函数,将线性激活函数与R e L U激活函数无缝连接;另一种方法是通过放松同伦参数来提高训练的精化过程。我们在神经切线核(NTK)的背景下对这种新方法进行了深入分析,揭示了显著提高的收敛速度。我们的实验结果,特别是在考虑更大宽度的网络时,验证了理论结论。该提议的HRTA显示了其他激活函数和深度神经网络的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信