Dalaena E Rivera, Kayla Poirier, Samuel Moore, Ophélie Nicolle, Emily Morgan, Jonah Faye Longares, Anupama Singh, Grégoire Michaux, Marie-Anne Félix, Robert J Luallen
{"title":"Dynamics of gut colonization by commensal and pathogenic bacteria that attach to the intestinal epithelium.","authors":"Dalaena E Rivera, Kayla Poirier, Samuel Moore, Ophélie Nicolle, Emily Morgan, Jonah Faye Longares, Anupama Singh, Grégoire Michaux, Marie-Anne Félix, Robert J Luallen","doi":"10.1038/s41522-025-00696-9","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial adherence to the intestinal epithelium plays a role in niche establishment in the gut lumen. Through sampling natural populations of Caenorhabditis, we discovered several bacterial species that adhere to the intestinal epithelium via polar, intimate association, best described as attachment. These bacteria had varying effects on host fitness and physiology, with one species having negative effects, and the others exhibiting neutral effects. These bacteria can actively divide in the gut lumen, either replicating throughout the gut simultaneously or anteroposteriorly. In competition assays, animals pre-colonized with an attaching commensal bacteria reduced colonization by the pathogenic bacteria, but this effect was not seen when animals were colonized by both species simultaneously. Regardless of the colonization paradigm, populations exposed to both bacteria showed a near-identical mitigation of the pathogenic effects. Altogether, these strains illustrate the capacity of microbiome bacteria to attach, replicate, and establish a niche across the entire intestinal lumen.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"70"},"PeriodicalIF":7.8000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12049552/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00696-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial adherence to the intestinal epithelium plays a role in niche establishment in the gut lumen. Through sampling natural populations of Caenorhabditis, we discovered several bacterial species that adhere to the intestinal epithelium via polar, intimate association, best described as attachment. These bacteria had varying effects on host fitness and physiology, with one species having negative effects, and the others exhibiting neutral effects. These bacteria can actively divide in the gut lumen, either replicating throughout the gut simultaneously or anteroposteriorly. In competition assays, animals pre-colonized with an attaching commensal bacteria reduced colonization by the pathogenic bacteria, but this effect was not seen when animals were colonized by both species simultaneously. Regardless of the colonization paradigm, populations exposed to both bacteria showed a near-identical mitigation of the pathogenic effects. Altogether, these strains illustrate the capacity of microbiome bacteria to attach, replicate, and establish a niche across the entire intestinal lumen.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.