Transdifferentiation of Integrin Beta 1 High+ Skin Progenitor Cells Into Functional Hepatocytes.

IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING
Stem Cells International Pub Date : 2025-04-23 eCollection Date: 2025-01-01 DOI:10.1155/sci/8953305
Jung Hwa Lim, Dae Hun Kim, Junhee Lee, Cho-Rok Jung, Hyun Mi Kang
{"title":"Transdifferentiation of Integrin Beta 1 High+ Skin Progenitor Cells Into Functional Hepatocytes.","authors":"Jung Hwa Lim, Dae Hun Kim, Junhee Lee, Cho-Rok Jung, Hyun Mi Kang","doi":"10.1155/sci/8953305","DOIUrl":null,"url":null,"abstract":"<p><p>A highly reproducible and functional liver model that closely resembles the human liver plays a crucial role in drug development, disease research, personalized medicine, and regenerative medicine. This study aimed to establish an in vitro liver model using skin epidermal progenitor cells (EPCs), which are easily accessible and exhibit a high proliferative capacity. Skin EPCs with high integrin beta 1 expression demonstrated multipotent differentiation potential, capable of differentiating into adipocyte- and neuron-like cells in vitro. Furthermore, when exposed to high concentrations of activin A, along with Wnt3a and BMP4, these cells efficiently differentiated into definitive endoderm, exhibiting high FOXA2 expression. Under our culture conditions, they further differentiated into functional hepatocytes. These differentiated cells exhibited high albumin secretion, CYP activity, and drug metabolism capabilities similar to those observed in vivo. In conclusion, this study highlights the potential of EPCs to differentiate into functional hepatocytes, providing a feasible and scalable source of hepatocytes for drug screening, liver disease modeling, and potential cell-based therapies.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2025 ","pages":"8953305"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043391/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/sci/8953305","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A highly reproducible and functional liver model that closely resembles the human liver plays a crucial role in drug development, disease research, personalized medicine, and regenerative medicine. This study aimed to establish an in vitro liver model using skin epidermal progenitor cells (EPCs), which are easily accessible and exhibit a high proliferative capacity. Skin EPCs with high integrin beta 1 expression demonstrated multipotent differentiation potential, capable of differentiating into adipocyte- and neuron-like cells in vitro. Furthermore, when exposed to high concentrations of activin A, along with Wnt3a and BMP4, these cells efficiently differentiated into definitive endoderm, exhibiting high FOXA2 expression. Under our culture conditions, they further differentiated into functional hepatocytes. These differentiated cells exhibited high albumin secretion, CYP activity, and drug metabolism capabilities similar to those observed in vivo. In conclusion, this study highlights the potential of EPCs to differentiate into functional hepatocytes, providing a feasible and scalable source of hepatocytes for drug screening, liver disease modeling, and potential cell-based therapies.

整合素β 1高+皮肤祖细胞向功能性肝细胞的转分化。
一个高度可复制和功能接近人类肝脏的肝脏模型在药物开发、疾病研究、个性化医疗和再生医学中起着至关重要的作用。本研究旨在利用易获得且具有高增殖能力的皮肤表皮祖细胞(EPCs)建立体外肝脏模型。高整合素- 1表达的皮肤EPCs表现出多能分化潜能,能够在体外分化为脂肪细胞和神经元样细胞。此外,当暴露于高浓度的激活素A,以及Wnt3a和BMP4时,这些细胞有效地分化为最终的内胚层,表现出高表达的FOXA2。在我们的培养条件下,它们进一步分化为功能性肝细胞。这些分化的细胞表现出高白蛋白分泌、CYP活性和药物代谢能力,与在体内观察到的相似。总之,本研究强调了EPCs分化为功能性肝细胞的潜力,为药物筛选、肝脏疾病建模和潜在的基于细胞的治疗提供了可行且可扩展的肝细胞来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cells International
Stem Cells International CELL & TISSUE ENGINEERING-
CiteScore
8.10
自引率
2.30%
发文量
188
审稿时长
18 weeks
期刊介绍: Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials. Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信