Boron-Doped Zinc Oxide Electron-Selective Contacts for Crystalline Silicon Solar Cells with Efficiency over 22.0.

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2024-09-22 eCollection Date: 2024-11-01 DOI:10.1002/smsc.202400168
Zheng Li, Anzhi Xie, Qingxian Nong, Yiwei Sun, Haihuai Cai, Zhexi Chen, Jian He, Pingqi Gao
{"title":"Boron-Doped Zinc Oxide Electron-Selective Contacts for Crystalline Silicon Solar Cells with Efficiency over 22.0.","authors":"Zheng Li, Anzhi Xie, Qingxian Nong, Yiwei Sun, Haihuai Cai, Zhexi Chen, Jian He, Pingqi Gao","doi":"10.1002/smsc.202400168","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of wide-bandgap metal compound films with excellent passivation and contact properties on crystalline silicon (c-Si) surface, as alternatives to traditional-doped Si thin films, holds significant promise for the future enhancement of c-Si solar cell efficiency. Herein, conductive boron-doped zinc oxide (ZnO:B) films are deposited by atomic layer deposition (ALD) process and investigated as electron-selective contacts, in combination with a thin SiO <sub><i>x</i></sub> passivating interlayer. This combination demonstrates a relative low contact resistivity of ≈2 mΩ cm<sup>2</sup> and improved passivation quality. Further application of this SiO <sub><i>x</i></sub> /ZnO:B stack as a full-area electron-selective passivating contact in proof-of-concept n-type c-Si solar cells results in a satisfactory power conversion efficiency of over 22.0%. This electron-selective passivating contact structure, prepared via low-temperature, simplified, and the compositionally controlled ALD process, offers a promising pathway for the development of high-efficiency and low-cost c-Si solar cells.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"4 11","pages":"2400168"},"PeriodicalIF":11.1000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration of wide-bandgap metal compound films with excellent passivation and contact properties on crystalline silicon (c-Si) surface, as alternatives to traditional-doped Si thin films, holds significant promise for the future enhancement of c-Si solar cell efficiency. Herein, conductive boron-doped zinc oxide (ZnO:B) films are deposited by atomic layer deposition (ALD) process and investigated as electron-selective contacts, in combination with a thin SiO x passivating interlayer. This combination demonstrates a relative low contact resistivity of ≈2 mΩ cm2 and improved passivation quality. Further application of this SiO x /ZnO:B stack as a full-area electron-selective passivating contact in proof-of-concept n-type c-Si solar cells results in a satisfactory power conversion efficiency of over 22.0%. This electron-selective passivating contact structure, prepared via low-temperature, simplified, and the compositionally controlled ALD process, offers a promising pathway for the development of high-efficiency and low-cost c-Si solar cells.

效率超过22.0的晶体硅太阳能电池的掺硼氧化锌电子选择触点。
在晶体硅(c-Si)表面探索具有优异钝化和接触性能的宽禁带金属化合物薄膜,作为传统掺杂Si薄膜的替代品,对未来提高c-Si太阳能电池效率具有重要的前景。本文通过原子层沉积(ALD)工艺沉积了导电掺硼氧化锌(ZnO:B)薄膜,并结合薄SiO x钝化中间层研究了其作为电子选择触点的特性。这种组合证明了相对低的接触电阻率≈2 mΩ cm2,并改善了钝化质量。进一步将这种SiO x /ZnO:B叠层作为全面积电子选择性钝化触点应用于概念验证型n型c-Si太阳能电池,可获得超过22.0%的令人满意的功率转换效率。这种电子选择性钝化接触结构是通过低温、简化和成分控制的ALD工艺制备的,为开发高效、低成本的c-Si太阳能电池提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信