Shi-Han Ang, Roger C Ho, Roger S McIntyre, Zhisong Zhang, Soon-Kiat Chang, Kayla M Teopiz, Cyrus Sh Ho
{"title":"The Clinical Utility of Biomarkers in Diagnosing Major Depressive Disorder in Adults: A Systematic Review of Literature From 2013 to 2023.","authors":"Shi-Han Ang, Roger C Ho, Roger S McIntyre, Zhisong Zhang, Soon-Kiat Chang, Kayla M Teopiz, Cyrus Sh Ho","doi":"10.30773/pi.2024.0152","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The variety and efficacy of biomarkers available that may be used objectively to diagnose major depressive disorder (MDD) in adults are unclear. This systematic review aims to identify and evaluate the variety of objective markers used to diagnose MDD in adults.</p><p><strong>Methods: </strong>The search strategy was applied via PubMed and PsycINFO over the past 10 years (2013-2023) to capture the latest available evidence supporting the use of biomarkers to diagnose MDD. Data was reported through narrative synthesis.</p><p><strong>Results: </strong>Forty-two studies were included in the review. Findings were synthesised based on the following measures: blood, neuroimaging/neurophysiology, urine, dermatological, auditory, vocal, cerebrospinal fluid and combinatory-and evaluated based on its sensitivity/specificity and area under the curve values. The best predictors of blood (MYT1 gene), neuroimaging/neurophysiological (5-HT1A auto-receptor binding in the dorsal and median raphe), urinary (combined albumin, AMBP, HSPB, APOA1), cerebrospinal fluid-based (neuron specific enolase, microRNA) biomarkers were found to be closely linked to the pathophysiology of MDD.</p><p><strong>Conclusion: </strong>A large variety of biomarkers were available to diagnose MDD, with the best performing biomarkers intrinsically related to the pathophysiology of MDD. Potential for future research lies in investigating the joint sensitivity of the best performing biomarkers identified via machine learning methods and establishing the causal effect between these biomarkers and MDD.</p>","PeriodicalId":21164,"journal":{"name":"Psychiatry Investigation","volume":"22 4","pages":"341-356"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022786/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30773/pi.2024.0152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The variety and efficacy of biomarkers available that may be used objectively to diagnose major depressive disorder (MDD) in adults are unclear. This systematic review aims to identify and evaluate the variety of objective markers used to diagnose MDD in adults.
Methods: The search strategy was applied via PubMed and PsycINFO over the past 10 years (2013-2023) to capture the latest available evidence supporting the use of biomarkers to diagnose MDD. Data was reported through narrative synthesis.
Results: Forty-two studies were included in the review. Findings were synthesised based on the following measures: blood, neuroimaging/neurophysiology, urine, dermatological, auditory, vocal, cerebrospinal fluid and combinatory-and evaluated based on its sensitivity/specificity and area under the curve values. The best predictors of blood (MYT1 gene), neuroimaging/neurophysiological (5-HT1A auto-receptor binding in the dorsal and median raphe), urinary (combined albumin, AMBP, HSPB, APOA1), cerebrospinal fluid-based (neuron specific enolase, microRNA) biomarkers were found to be closely linked to the pathophysiology of MDD.
Conclusion: A large variety of biomarkers were available to diagnose MDD, with the best performing biomarkers intrinsically related to the pathophysiology of MDD. Potential for future research lies in investigating the joint sensitivity of the best performing biomarkers identified via machine learning methods and establishing the causal effect between these biomarkers and MDD.
期刊介绍:
The Psychiatry Investigation is published on the 25th day of every month in English by the Korean Neuropsychiatric Association (KNPA). The Journal covers the whole range of psychiatry and neuroscience. Both basic and clinical contributions are encouraged from all disciplines and research areas relevant to the pathophysiology and management of neuropsychiatric disorders and symptoms, as well as researches related to cross cultural psychiatry and ethnic issues in psychiatry. The Journal publishes editorials, review articles, original articles, brief reports, viewpoints and correspondences. All research articles are peer reviewed. Contributions are accepted for publication on the condition that their substance has not been published or submitted for publication elsewhere. Authors submitting papers to the Journal (serially or otherwise) with a common theme or using data derived from the same sample (or a subset thereof) must send details of all relevant previous publications and simultaneous submissions. The Journal is not responsible for statements made by contributors. Material in the Journal does not necessarily reflect the views of the Editor or of the KNPA. Manuscripts accepted for publication are copy-edited to improve readability and to ensure conformity with house style.