Eva Martinez Luque, Dongsuk Sung, Benjamin B Risk, Rachel M Goldberg, Candace C Fleischer
{"title":"Coil Combination Using OpTIMUS Results in Improved Signal-to-Noise Ratios of In Vivo MR Spectra Acquired at 7 T.","authors":"Eva Martinez Luque, Dongsuk Sung, Benjamin B Risk, Rachel M Goldberg, Candace C Fleischer","doi":"10.1002/nbm.70044","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance spectroscopy (MRS) enables noninvasive quantification of metabolites, but its utility in vivo can be limited by low signal-to-noise ratios (SNRs) and long acquisition times. The use of ultrahigh-field (UHF) strengths (> 3 T) combined with multichannel phased receive arrays can improve spectral SNR. A crucial step in the use of multichannel arrays is the combination of spectra acquired from individual coil channels. We previously developed a coil combination method at 3 T, optimized truncation to integrate multichannel MRS data using rank-R singular value decomposition (OpTIMUS), which uses noise-whitened windowed spectra and iterative rank-R singular value decomposition (SVD) to combine multichannel MRS data. Here, we evaluated OpTIMUS for combination of MR spectra acquired using a multichannel phased array at 7 T and compared spectral SNR and metabolite quantification with spectra combined using whitened SVD (WSVD), signal/noise squared (S/N<sup>2</sup>), and the Brown method. Data were acquired from 14 healthy volunteers, including five with data acquired at both 3 and 7 T, and from nine people living with HIV. Spectra combined using OpTIMUS resulted in a higher SNR compared to the three other methods, consistent with our prior results at 3 T. With half the number of averages (N = 32), spectra combined with OpTIMUS had higher SNR compared to spectra using the Brown method with 64 averages. Additionally, spectra combined using OpTIMUS at 7 T were compared to spectra acquired at 3 T with the same number of averages (N = 64) or matched acquisition times (N = 110 averages), and spectral fitting was consistently improved at 7 T even when comparable SNR was obtained at 3 T. The ability to increase SNR and maintain spectral quality by optimizing spectral coil combination has the potential to reduce scan time, a key challenge for routine clinical use of MRS.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 6","pages":"e70044"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.70044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic resonance spectroscopy (MRS) enables noninvasive quantification of metabolites, but its utility in vivo can be limited by low signal-to-noise ratios (SNRs) and long acquisition times. The use of ultrahigh-field (UHF) strengths (> 3 T) combined with multichannel phased receive arrays can improve spectral SNR. A crucial step in the use of multichannel arrays is the combination of spectra acquired from individual coil channels. We previously developed a coil combination method at 3 T, optimized truncation to integrate multichannel MRS data using rank-R singular value decomposition (OpTIMUS), which uses noise-whitened windowed spectra and iterative rank-R singular value decomposition (SVD) to combine multichannel MRS data. Here, we evaluated OpTIMUS for combination of MR spectra acquired using a multichannel phased array at 7 T and compared spectral SNR and metabolite quantification with spectra combined using whitened SVD (WSVD), signal/noise squared (S/N2), and the Brown method. Data were acquired from 14 healthy volunteers, including five with data acquired at both 3 and 7 T, and from nine people living with HIV. Spectra combined using OpTIMUS resulted in a higher SNR compared to the three other methods, consistent with our prior results at 3 T. With half the number of averages (N = 32), spectra combined with OpTIMUS had higher SNR compared to spectra using the Brown method with 64 averages. Additionally, spectra combined using OpTIMUS at 7 T were compared to spectra acquired at 3 T with the same number of averages (N = 64) or matched acquisition times (N = 110 averages), and spectral fitting was consistently improved at 7 T even when comparable SNR was obtained at 3 T. The ability to increase SNR and maintain spectral quality by optimizing spectral coil combination has the potential to reduce scan time, a key challenge for routine clinical use of MRS.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.