Deep-learning-enabled spatial frequency domain imaging of the spatiotemporal dynamics of skin physiology.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-04-01 Epub Date: 2025-04-20 DOI:10.1117/1.JBO.30.4.046008
Guowu Huang, Yansen Hu, Weihao Lin, Chenfan Shen, Jianmin Yang, Zhineng Xie, Yifan Ge, Xin Jin, Xiafei Qian, Min Xu
{"title":"Deep-learning-enabled spatial frequency domain imaging of the spatiotemporal dynamics of skin physiology.","authors":"Guowu Huang, Yansen Hu, Weihao Lin, Chenfan Shen, Jianmin Yang, Zhineng Xie, Yifan Ge, Xin Jin, Xiafei Qian, Min Xu","doi":"10.1117/1.JBO.30.4.046008","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Spatial frequency domain imaging (SFDI) is an emerging optical imaging modality for visualizing tissue absorption and scattering properties. This approach is promising for noninvasive wide field-of-view (FOV) monitoring of biophysiological processes <i>in vivo</i>.</p><p><strong>Aim: </strong>We aim to develop deep-learning-enabled spatial frequency domain imaging (SFDI-net) for real-time large FOV imaging of the optical, structural, and physiological properties and demonstrate its application for probing the spatiotemporal dynamics of skin physiology.</p><p><strong>Approach: </strong>SFDI-net, based on mapping of a two-layer structure into an equivalent homogeneous medium for spatially modulated light and with a convolutional neural network architecture, produces two-dimensional maps of optical, structural, and physiological parameters for bilayered tissue, including cutaneous hemoglobin concentration, oxygen saturation, scattering properties (reduced scattering coefficient and scattering power), melanin content, surface roughness, and epidermal thickness, with visible spatially modulated light at the camera frame rate.</p><p><strong>Results: </strong>Compared with traditional approaches, SFDI-net achieves a real-time inversion speed and significantly improves image quality by effectively suppressing noise while preserving tissue structure without oversmoothing. We demonstrate the application of the SFDI-net for monitoring the spatiotemporal dynamics of forearm skin physiology in reactive hyperemia and rhythmic respiration and reveal their intricate patterns in hemodynamics.</p><p><strong>Conclusions: </strong>Deep-learning-enabled spatial frequency domain imaging and SFDI-net may offer insights into the cardiorespiratory system and have promising clinical utility for disease diagnosis, surveillance, and therapeutic assessment. Future hardware and software advancements will bring SFDI-net to clinical practice.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"046008"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014942/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.4.046008","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Spatial frequency domain imaging (SFDI) is an emerging optical imaging modality for visualizing tissue absorption and scattering properties. This approach is promising for noninvasive wide field-of-view (FOV) monitoring of biophysiological processes in vivo.

Aim: We aim to develop deep-learning-enabled spatial frequency domain imaging (SFDI-net) for real-time large FOV imaging of the optical, structural, and physiological properties and demonstrate its application for probing the spatiotemporal dynamics of skin physiology.

Approach: SFDI-net, based on mapping of a two-layer structure into an equivalent homogeneous medium for spatially modulated light and with a convolutional neural network architecture, produces two-dimensional maps of optical, structural, and physiological parameters for bilayered tissue, including cutaneous hemoglobin concentration, oxygen saturation, scattering properties (reduced scattering coefficient and scattering power), melanin content, surface roughness, and epidermal thickness, with visible spatially modulated light at the camera frame rate.

Results: Compared with traditional approaches, SFDI-net achieves a real-time inversion speed and significantly improves image quality by effectively suppressing noise while preserving tissue structure without oversmoothing. We demonstrate the application of the SFDI-net for monitoring the spatiotemporal dynamics of forearm skin physiology in reactive hyperemia and rhythmic respiration and reveal their intricate patterns in hemodynamics.

Conclusions: Deep-learning-enabled spatial frequency domain imaging and SFDI-net may offer insights into the cardiorespiratory system and have promising clinical utility for disease diagnosis, surveillance, and therapeutic assessment. Future hardware and software advancements will bring SFDI-net to clinical practice.

基于深度学习的皮肤生理时空动态空间频域成像。
意义:空间频域成像(SFDI)是一种新兴的用于组织吸收和散射特性可视化的光学成像方式。这种方法有望用于无创宽视场(FOV)监测体内生物生理过程。目的:我们的目标是开发基于深度学习的空间频域成像(SFDI-net),用于光学、结构和生理特性的实时大视场成像,并展示其在探测皮肤生理时空动态方面的应用。方法:SFDI-net基于将两层结构映射到空间调制光的等效均匀介质中,并使用卷积神经网络架构,生成双层组织的光学、结构和生理参数的二维地图,包括皮肤血红蛋白浓度、氧饱和度、散射特性(降低的散射系数和散射功率)、黑色素含量、表面粗糙度和表皮厚度。以相机帧率的可见空间调制光。结果:与传统方法相比,SFDI-net在不过度平滑的情况下有效抑制噪声,保留组织结构,实现了实时的反演速度,显著提高了图像质量。我们展示了SFDI-net在监测前臂皮肤反应性充血和节律性呼吸的时空动力学中的应用,并揭示了它们在血液动力学中的复杂模式。结论:基于深度学习的空间频域成像和SFDI-net可以深入了解心肺系统,并在疾病诊断、监测和治疗评估方面具有良好的临床应用前景。未来硬件和软件的进步将使SFDI-net应用于临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信