Omar Rafael Alemán, Juan Carlos Quintero, Ignacio Camacho-Arroyo
{"title":"The language of glioblastoma: A tale of cytokines and sex hormones communication.","authors":"Omar Rafael Alemán, Juan Carlos Quintero, Ignacio Camacho-Arroyo","doi":"10.1093/noajnl/vdaf017","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GB) is the most aggressive and frequent tumor in the central nervous system and, in humans, represents the worst prognosis for cancer. GB develops a very complex microenvironment, recruiting and interacting with a variety of cells and soluble factors, including immune cells, cytokines, and sex hormones, that contribute to GB survival and progression. Recent evidence has shown a crosstalk between cytokine and sex hormone signaling in GB. This communication could provide GB resistance to treatments and malignancy. Then, how GB orchestrates this communication is a matter of interest. For instance, a critical interaction between tumor necrosis factor-beta (TGF-β) and estrogen receptor signaling has been reported in regulating epithelial-mesenchymal transition, an essential step in GB progression. Furthermore, an inhibition of TGF-β signaling by androgen receptor has been reported to promote GB tumorigenesis in men. Conversely, it has been described that cytokines regulate steroid hormone production in different organs, and this mechanism could be involved in GB development and progression. All these data suggest an intercommunication between the immune and endocrine systems in the tumor microenvironment. Thus, in this review, we focus on explaining the knowledge about this critical intercommunication system and its implication in GB progression.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"7 1","pages":"vdaf017"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdaf017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GB) is the most aggressive and frequent tumor in the central nervous system and, in humans, represents the worst prognosis for cancer. GB develops a very complex microenvironment, recruiting and interacting with a variety of cells and soluble factors, including immune cells, cytokines, and sex hormones, that contribute to GB survival and progression. Recent evidence has shown a crosstalk between cytokine and sex hormone signaling in GB. This communication could provide GB resistance to treatments and malignancy. Then, how GB orchestrates this communication is a matter of interest. For instance, a critical interaction between tumor necrosis factor-beta (TGF-β) and estrogen receptor signaling has been reported in regulating epithelial-mesenchymal transition, an essential step in GB progression. Furthermore, an inhibition of TGF-β signaling by androgen receptor has been reported to promote GB tumorigenesis in men. Conversely, it has been described that cytokines regulate steroid hormone production in different organs, and this mechanism could be involved in GB development and progression. All these data suggest an intercommunication between the immune and endocrine systems in the tumor microenvironment. Thus, in this review, we focus on explaining the knowledge about this critical intercommunication system and its implication in GB progression.