Universal semantic feature extraction from EEG signals: a task-independent framework.

Hossein Ahmadi, Luca Mesin
{"title":"Universal semantic feature extraction from EEG signals: a task-independent framework.","authors":"Hossein Ahmadi, Luca Mesin","doi":"10.1088/1741-2552/add08f","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Extracting universal, task-independent semantic features from electroencephalography (EEG) signals remains an open challenge. Traditional approaches are often task-specific, limiting their generalization across different EEG paradigms. This study aims to develop a robust, unsupervised framework for learning high-level, task-independent neural representations.<i>Approach.</i>We propose a novel framework integrating convolutional neural networks, AutoEncoders, and Transformers to extract both low-level spatiotemporal patterns and high-level semantic features from EEG signals. The model is trained in an unsupervised manner to ensure adaptability across diverse EEG paradigms, including motor imagery (MI), steady-state visually evoked potentials (SSVEPs), and event-related potentials (ERPs, specifically P300). Extensive analyses, including clustering, correlation, and ablation studies, are conducted to validate the quality and interpretability of the extracted features.<i>Main results.</i>Our method achieves state-of-the-art performance, with average classification accuracies of 83.50% and 84.84% on MI datasets (BCICIV_2a and BCICIV_2b), 98.41% and 99.66% on SSVEP datasets (Lee2019-SSVEP and Nakanishi2015), and an average AUC of 91.80% across eight ERP datasets. t-distributed stochastic neighbor embedding and clustering analyses reveal that the extracted features exhibit enhanced separability and structure compared to raw EEG data. Correlation studies confirm the framework's ability to balance universal and subject-specific features, while ablation results highlight the near-optimality of the selected model configuration.<i>Significance.</i>This work establishes a universal framework for task-independent semantic feature extraction from EEG signals, bridging the gap between conventional feature engineering and modern deep learning methods. By providing robust, generalizable representations across diverse EEG paradigms, this approach lays the foundation for advanced brain-computer interface applications, cross-task EEG analysis, and future developments in semantic EEG processing.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":"22 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/add08f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Extracting universal, task-independent semantic features from electroencephalography (EEG) signals remains an open challenge. Traditional approaches are often task-specific, limiting their generalization across different EEG paradigms. This study aims to develop a robust, unsupervised framework for learning high-level, task-independent neural representations.Approach.We propose a novel framework integrating convolutional neural networks, AutoEncoders, and Transformers to extract both low-level spatiotemporal patterns and high-level semantic features from EEG signals. The model is trained in an unsupervised manner to ensure adaptability across diverse EEG paradigms, including motor imagery (MI), steady-state visually evoked potentials (SSVEPs), and event-related potentials (ERPs, specifically P300). Extensive analyses, including clustering, correlation, and ablation studies, are conducted to validate the quality and interpretability of the extracted features.Main results.Our method achieves state-of-the-art performance, with average classification accuracies of 83.50% and 84.84% on MI datasets (BCICIV_2a and BCICIV_2b), 98.41% and 99.66% on SSVEP datasets (Lee2019-SSVEP and Nakanishi2015), and an average AUC of 91.80% across eight ERP datasets. t-distributed stochastic neighbor embedding and clustering analyses reveal that the extracted features exhibit enhanced separability and structure compared to raw EEG data. Correlation studies confirm the framework's ability to balance universal and subject-specific features, while ablation results highlight the near-optimality of the selected model configuration.Significance.This work establishes a universal framework for task-independent semantic feature extraction from EEG signals, bridging the gap between conventional feature engineering and modern deep learning methods. By providing robust, generalizable representations across diverse EEG paradigms, this approach lays the foundation for advanced brain-computer interface applications, cross-task EEG analysis, and future developments in semantic EEG processing.

脑电信号的通用语义特征提取:一个任务无关的框架。
目标。从脑电图(EEG)信号中提取通用的、任务无关的语义特征仍然是一个悬而未决的挑战。传统的方法通常是特定于任务的,限制了它们在不同脑电图范式中的泛化。我们提出了一个集成卷积神经网络、AutoEncoders和transformer的新框架,用于从脑电图信号中提取低级时空模式和高级语义特征。该模型以无监督的方式进行训练,以确保不同EEG模式的适应性,包括运动图像(MI)、稳态视觉诱发电位(SSVEPs)和事件相关电位(erp,特别是P300)。广泛的分析,包括聚类、相关性和消融研究,被用于验证提取特征的质量和可解释性。主要的结果。我们的方法达到了最先进的性能,MI数据集(BCICIV_2a和BCICIV_2b)的平均分类准确率为83.50%和84.84%,SSVEP数据集(Lee2019-SSVEP和Nakanishi2015)的平均分类准确率为98.41%和99.66%,8个ERP数据集的平均AUC为91.80%。t分布随机邻居嵌入和聚类分析表明,与原始脑电数据相比,提取的特征具有更强的可分离性和结构。相关性研究证实了该框架能够平衡通用特征和特定主题特征,而消融结果突出了所选模型配置的接近最优性。意义:本工作建立了一个从脑电信号中提取任务无关语义特征的通用框架,弥合了传统特征工程与现代深度学习方法之间的差距。通过提供跨不同脑电范式的鲁棒性、可泛化表示,该方法为高级脑机接口应用、跨任务脑电分析以及语义脑电处理的未来发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信