Loss of Heterozygosity associated with ubiquitous environments in yeast.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2025-05-12 eCollection Date: 2025-05-01 DOI:10.1371/journal.pgen.1011692
Nikilesh Vijayan, Sameer Joshi, Praseetha Sarath, Koodali T Nishant
{"title":"Loss of Heterozygosity associated with ubiquitous environments in yeast.","authors":"Nikilesh Vijayan, Sameer Joshi, Praseetha Sarath, Koodali T Nishant","doi":"10.1371/journal.pgen.1011692","DOIUrl":null,"url":null,"abstract":"<p><p>The effect of ubiquitous environmental conditions on mutational mechanisms, particularly loss of heterozygosity (LOH) remains poorly understood. Environment induced LOH can rapidly alter the genome and promote disease progression. Using mutation accumulation (MA) lines, we analysed the effect of ubiquitous environmental conditions on mutational mechanisms in a diploid hybrid (S288c/YJM789) baker's yeast strain. These included blue light, low glucose (calorie restriction), oxidative stress (H2O2), high temperature (37°C), ethanol, and salt (NaCl). The frequency of LOH increased significantly in all environments including calorie restriction relative to the control (YPD). Interestingly, the percentage of the genome covered by LOH varied significantly depending on the condition. For example, the LOH tracts seen in calorie restriction conditions were significantly shorter than those observed in blue light exposure that rapidly homozygotized the genome. We also report a unique mutational signature of blue light exposure comprising LOH, small indels, large deletions and transversion mutations (G:C > T:A; G:C > C:G), with the latter likely to result from the photooxidation of guanine bases. Our results suggest ubiquitous environmental conditions cause LOH but result in distinct mutational signatures due to the type of damage induced and the pathways used to repair them.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 5","pages":"e1011692"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12068580/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011692","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of ubiquitous environmental conditions on mutational mechanisms, particularly loss of heterozygosity (LOH) remains poorly understood. Environment induced LOH can rapidly alter the genome and promote disease progression. Using mutation accumulation (MA) lines, we analysed the effect of ubiquitous environmental conditions on mutational mechanisms in a diploid hybrid (S288c/YJM789) baker's yeast strain. These included blue light, low glucose (calorie restriction), oxidative stress (H2O2), high temperature (37°C), ethanol, and salt (NaCl). The frequency of LOH increased significantly in all environments including calorie restriction relative to the control (YPD). Interestingly, the percentage of the genome covered by LOH varied significantly depending on the condition. For example, the LOH tracts seen in calorie restriction conditions were significantly shorter than those observed in blue light exposure that rapidly homozygotized the genome. We also report a unique mutational signature of blue light exposure comprising LOH, small indels, large deletions and transversion mutations (G:C > T:A; G:C > C:G), with the latter likely to result from the photooxidation of guanine bases. Our results suggest ubiquitous environmental conditions cause LOH but result in distinct mutational signatures due to the type of damage induced and the pathways used to repair them.

杂合性的丧失与酵母中普遍存在的环境有关。
普遍存在的环境条件对突变机制的影响,特别是杂合性损失(LOH)仍然知之甚少。环境诱导的LOH可以迅速改变基因组并促进疾病进展。利用突变积累(MA)系,分析了普遍存在的环境条件对二倍体酵母(S288c/YJM789)突变机制的影响。其中包括蓝光、低葡萄糖(热量限制)、氧化应激(H2O2)、高温(37°C)、乙醇和盐(NaCl)。相对于对照组(YPD),在包括热量限制在内的所有环境中,LOH的频率都显著增加。有趣的是,LOH所覆盖的基因组百分比因疾病而有显著差异。例如,在热量限制条件下观察到的LOH束明显短于在蓝光照射下观察到的基因组快速纯合子。我们还报道了蓝光暴露的独特突变特征,包括LOH,小索引,大缺失和翻转突变(G:C > T: a;G:C > C:G),后者可能是鸟嘌呤碱光氧化的结果。我们的研究结果表明,无处不在的环境条件会导致LOH,但由于所诱导的损伤类型和用于修复它们的途径不同,会导致不同的突变特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信