Method for visualizing detailed profiles of synchrotron X-ray beams using diamond-thin films and silicon drift detectors.

IF 2.5 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-05-01 Epub Date: 2025-04-22 DOI:10.1107/S1600577525002838
Togo Kudo, Shinji Suzuki, Mutsumi Sano, Toshiro Itoga, Hiroyasu Masunaga, Shunji Goto, Sunao Takahashi
{"title":"Method for visualizing detailed profiles of synchrotron X-ray beams using diamond-thin films and silicon drift detectors.","authors":"Togo Kudo, Shinji Suzuki, Mutsumi Sano, Toshiro Itoga, Hiroyasu Masunaga, Shunji Goto, Sunao Takahashi","doi":"10.1107/S1600577525002838","DOIUrl":null,"url":null,"abstract":"<p><p>Contamination from nearby bending magnet radiation hinders precise and accurate determination of the true beam center of undulator radiation. To solve this problem, a semi-nondestructive method was developed to visualize the detailed profile of a synchrotron radiation beam by using a thin diamond film as a scatterer. As the beam passed through the diamond film, scattered X-rays were imaged using a pinhole camera and measured with a two-dimensional silicon drift detector (SDD) scan. With this configuration, the beam center was accurately determined by visualizing the radiation pattern distribution for each energy level of a pink X-ray beam within an aperture size of 1.5 mm × 1.5 mm, shaped by a front-end slit (FES) positioned upstream of the monochromator. Additionally, by scanning the FES in two dimensions with a reduced aperture of 0.4 mm × 0.4 mm, energy-resolved images were successfully obtained using the SDD at a fixed position. These images revealed the profile of undulator radiation over a broad area (with an aperture extending up to 4 mm) in a pre-slit positioned upstream of the FES, demonstrating good alignment with SPECTRA calculations. This method effectively eliminates contamination from nearby bending magnet radiation, a significant issue in previous approaches, enabling a direct and highly accurate determination of the true beam center.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":"32 Pt 3","pages":"622-628"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067321/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577525002838","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contamination from nearby bending magnet radiation hinders precise and accurate determination of the true beam center of undulator radiation. To solve this problem, a semi-nondestructive method was developed to visualize the detailed profile of a synchrotron radiation beam by using a thin diamond film as a scatterer. As the beam passed through the diamond film, scattered X-rays were imaged using a pinhole camera and measured with a two-dimensional silicon drift detector (SDD) scan. With this configuration, the beam center was accurately determined by visualizing the radiation pattern distribution for each energy level of a pink X-ray beam within an aperture size of 1.5 mm × 1.5 mm, shaped by a front-end slit (FES) positioned upstream of the monochromator. Additionally, by scanning the FES in two dimensions with a reduced aperture of 0.4 mm × 0.4 mm, energy-resolved images were successfully obtained using the SDD at a fixed position. These images revealed the profile of undulator radiation over a broad area (with an aperture extending up to 4 mm) in a pre-slit positioned upstream of the FES, demonstrating good alignment with SPECTRA calculations. This method effectively eliminates contamination from nearby bending magnet radiation, a significant issue in previous approaches, enabling a direct and highly accurate determination of the true beam center.

利用金刚石薄膜和硅漂移探测器可视化同步加速器x射线光束详细轮廓的方法。
来自附近弯曲磁辐射的污染阻碍了精确和准确地确定波动辐射的真正光束中心。为了解决这一问题,开发了一种半无损的方法,利用金刚石薄膜作为散射体来可视化同步辐射光束的详细轮廓。当光束穿过金刚石薄膜时,用针孔相机对散射的x射线进行成像,并用二维硅漂移探测器(SDD)扫描进行测量。在这种配置下,通过在单色仪上游的前端狭缝(FES)形成的1.5 mm × 1.5 mm孔径内显示粉红色x射线光束的每个能级的辐射模式分布,可以准确地确定光束中心。此外,通过缩小孔径为0.4 mm × 0.4 mm的二维扫描FES,利用SDD在固定位置成功获得了能量分辨图像。这些图像显示了位于FES上游的预狭缝中宽区域(孔径延伸至4mm)的波动辐射剖面,与SPECTRA计算结果很好地吻合。这种方法有效地消除了附近弯曲磁铁辐射的污染,这是以前方法中的一个重要问题,能够直接和高度准确地确定真正的光束中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信