{"title":"Physiological mechanisms and drought resistance assessment of four dominant species on the Loess Plateau under drought stress.","authors":"Qing Liu, Xiaoyang Xu, Jing Liang, Shiqi Zhang, Guoliang Wang, Ying Liu","doi":"10.1111/ppl.70261","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating frequency and severity of droughts have caused growth decline and increased mortality risk for plantations on the Loess Plateau. The main aim of this study was to explore the physiological mechanisms of four native dominant species during drought-induced mortality and evaluate their drought resistance capabilities. Drought was induced by withholding water from potted seedings, and we compared patterns in pit membrane damage, hydraulic function, and non-structural carbohydrates (NSC) dynamics across four tree species with distinct anatomical features. Our findings reveal species-specific vulnerability thresholds: Pinus tabulaeformis (-2.86 Mpa), Quercus liaotungensis (-1.92 Mpa), Robinia pseudoacacia (-0.109 Mpa), and Syringa reticulata (-0.93 Mpa). Additionally, drought stress was found to compromise pit membrane integrity, with water potential thresholds identified as R.pseudoacacia (-1.37 Mpa), S. reticulata (-2.20 Mpa), Q. liaotungensis (-2.39 Mpa), and P. tabulaeformis (-1.85 Mpa). The study concludes that R. pseudoacacia and S. reticulata exhibit greater susceptibility to hydraulic failure under severe drought conditions, leading to increased mortality risks. In contrast, Q. liaotungensis and P. tabulaeformis demonstrate enhanced drought tolerance and survival capacity. Our research elucidates the physiological mechanisms of drought-induced mortality, emphasizing the critical role of pit membrane damage in this process. These findings not only provide valuable insights into the drought resistance of native dominant species but also establish a scientific foundation for future artificial forest transformation initiatives on the Loess Plateau.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70261"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70261","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating frequency and severity of droughts have caused growth decline and increased mortality risk for plantations on the Loess Plateau. The main aim of this study was to explore the physiological mechanisms of four native dominant species during drought-induced mortality and evaluate their drought resistance capabilities. Drought was induced by withholding water from potted seedings, and we compared patterns in pit membrane damage, hydraulic function, and non-structural carbohydrates (NSC) dynamics across four tree species with distinct anatomical features. Our findings reveal species-specific vulnerability thresholds: Pinus tabulaeformis (-2.86 Mpa), Quercus liaotungensis (-1.92 Mpa), Robinia pseudoacacia (-0.109 Mpa), and Syringa reticulata (-0.93 Mpa). Additionally, drought stress was found to compromise pit membrane integrity, with water potential thresholds identified as R.pseudoacacia (-1.37 Mpa), S. reticulata (-2.20 Mpa), Q. liaotungensis (-2.39 Mpa), and P. tabulaeformis (-1.85 Mpa). The study concludes that R. pseudoacacia and S. reticulata exhibit greater susceptibility to hydraulic failure under severe drought conditions, leading to increased mortality risks. In contrast, Q. liaotungensis and P. tabulaeformis demonstrate enhanced drought tolerance and survival capacity. Our research elucidates the physiological mechanisms of drought-induced mortality, emphasizing the critical role of pit membrane damage in this process. These findings not only provide valuable insights into the drought resistance of native dominant species but also establish a scientific foundation for future artificial forest transformation initiatives on the Loess Plateau.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.