Irina G Tarkhanova, Vladimir M Zelikman, Irina V Lukiyanchuk, Marina S Vasilyeva, Vladimir V Tkachev, Vladimir V Korochentsev, Daria H Shlyk
{"title":"Ti-Supported Oxide Coatings Based on MWO<sub>4</sub> (M = Fe, Co, Ni): Plasma Electrolytic Synthesis, Characterization and Catalytic Properties in S, N-Heterocycles Peroxide Oxidation.","authors":"Irina G Tarkhanova, Vladimir M Zelikman, Irina V Lukiyanchuk, Marina S Vasilyeva, Vladimir V Tkachev, Vladimir V Korochentsev, Daria H Shlyk","doi":"10.3390/molecules30091998","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, catalytically active coatings on titanium were synthesized by plasma electrolytic oxidation (PEO) in aqueous electrolytes based on sodium tungstate with the addition of sodium phosphate or sodium borate and chelate complexes of iron, cobalt or nickel. Taking into account the EDX, XPS and XRD data, the oxide-phosphate coatings (PWFe, PWCo, PWNi) contained crystalline titanium oxide and amorphous tungstates and/or phosphates of iron triad metals. Amorphization was facilitated by high phosphorus concentrations (up to 6 at.%). Replacing phosphate with borate in the electrolyte with Ni(II)-EDTA complexes led to the crystallization of WO<sub>3</sub> and NiWO<sub>4</sub> in the PEO coatings (BWNi). All formed PEO coatings were active in reactions of the oxidative desulfurization (ODS) of thiophene and dibenzothiophene and oxidative denitrogenation (ODN) of pyridine, as well as in the simultaneous removal of S- and N-containing substrates from their mixture. The stability of samples with MWO<sub>4</sub> increased in the following series: PWNi < PWCo < PW < PWFe < BWNi. Replacing phosphate with borate in the electrolyte resulted in the preparation of catalysts with enhanced stability and activity. In contrast to PWM catalysts, the BWNi catalyst had selectivity toward the oxidation of pyridine in its mixture with thiophene.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073619/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30091998","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, catalytically active coatings on titanium were synthesized by plasma electrolytic oxidation (PEO) in aqueous electrolytes based on sodium tungstate with the addition of sodium phosphate or sodium borate and chelate complexes of iron, cobalt or nickel. Taking into account the EDX, XPS and XRD data, the oxide-phosphate coatings (PWFe, PWCo, PWNi) contained crystalline titanium oxide and amorphous tungstates and/or phosphates of iron triad metals. Amorphization was facilitated by high phosphorus concentrations (up to 6 at.%). Replacing phosphate with borate in the electrolyte with Ni(II)-EDTA complexes led to the crystallization of WO3 and NiWO4 in the PEO coatings (BWNi). All formed PEO coatings were active in reactions of the oxidative desulfurization (ODS) of thiophene and dibenzothiophene and oxidative denitrogenation (ODN) of pyridine, as well as in the simultaneous removal of S- and N-containing substrates from their mixture. The stability of samples with MWO4 increased in the following series: PWNi < PWCo < PW < PWFe < BWNi. Replacing phosphate with borate in the electrolyte resulted in the preparation of catalysts with enhanced stability and activity. In contrast to PWM catalysts, the BWNi catalyst had selectivity toward the oxidation of pyridine in its mixture with thiophene.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.