Genome-Wide Assessment of Pleiotropy Across >1000 Traits from Global Biobanks.

Michael G Levin, Satoshi Koyama, Jakob Woerner, David Y Zhang, Alexis Rodriguez, Tarak Nandi, Buu Truong, Sarah A Abramowitz, Hritvik Gupta, Himani Kamineni, Whitney Hornsby, Zilinghan Li, Taylor Cohron, Jennifer E Huffman, Patrick Ellinor, Dokyoon Kim, Katherine P Liao, Ravi K Madduri, Benjamin F Voight, Anurag Verma, Scott M Damrauer, Pradeep Natarajan
{"title":"Genome-Wide Assessment of Pleiotropy Across >1000 Traits from Global Biobanks.","authors":"Michael G Levin, Satoshi Koyama, Jakob Woerner, David Y Zhang, Alexis Rodriguez, Tarak Nandi, Buu Truong, Sarah A Abramowitz, Hritvik Gupta, Himani Kamineni, Whitney Hornsby, Zilinghan Li, Taylor Cohron, Jennifer E Huffman, Patrick Ellinor, Dokyoon Kim, Katherine P Liao, Ravi K Madduri, Benjamin F Voight, Anurag Verma, Scott M Damrauer, Pradeep Natarajan","doi":"10.1101/2025.04.18.25326074","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale genetic association studies have identified thousands of trait-associated risk loci, establishing the polygenic basis for common complex traits and diseases. Although prior studies suggest that many trait-associated loci are pleiotropic, the extent to which this pleiotropy reflects shared causal variants or confounding by linkage disequilibrium remains poorly characterized. To define a set of candidate loci with potentially pleiotropic associations, we performed genome-wide association study (GWAS) meta-analyses of up to 1,167 clinically relevant traits and diseases across 1,789,365 diverse individuals genetically similar to Admixed American (AMR, N<sub>Max</sub> = 60,756), African (AFR, N<sub>Max</sub> = 128,361), East Asian (EAS, N<sub>Max</sub> = 307,465), European (EUR, N<sub>Max</sub> = 1,283,907), and South Asian (SAS, N<sub>Max</sub> = 8,876) reference populations from the VA Million Veteran Program (MVP), UK Biobank (UKB), FinnGen, Biobank Japan (BBJ), Tohoku Medical Megabank (ToMMO), and Korean Genome and Epidemiology Study (KoGES). We identified 27,193 genome-wide significant locus-trait pairs (1MB region with P<sub>GWAMA</sub> < 5 × 10<sup>-8</sup>) in within-population analysis and 29,139 in multi-population analysis (P<sub>MR-MEGA</sub> < 5 × 10<sup>-8</sup>). Among these, 11.5% (n = 3,149) of locus-trait pairs in population-wise and 6.4% (n = 1,875) in multi-population analyses did not reach genome-wide significance in previously published GWAS. In aggregate, the genome-wide significant loci fell within 2,624 non-overlapping autosomal genomic windows on average ~600kb in size. Each locus contained genome-wide significant signals for a median of 6 traits (IQR 2 to 18), including 2,110 (80%) pleiotropic loci associated with >1 trait. Multi-trait colocalization identified 1,902 (72%) loci with high-confidence (posterior probability > 0.9) evidence of a shared causal variant across two or more traits. Variants in pleiotropic loci were significantly enriched for a broad spectrum of functional annotations compared to non-pleiotropic counterparts. Polygenic scores (PGS) developed from these data generally improved prediction compared to existing PGS and were broadly associated with both on- and off-target phenotypes. These results provide a contemporary map of genetic pleiotropy across the spectrum of human traits/diseases and genetic backgrounds.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.04.18.25326074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale genetic association studies have identified thousands of trait-associated risk loci, establishing the polygenic basis for common complex traits and diseases. Although prior studies suggest that many trait-associated loci are pleiotropic, the extent to which this pleiotropy reflects shared causal variants or confounding by linkage disequilibrium remains poorly characterized. To define a set of candidate loci with potentially pleiotropic associations, we performed genome-wide association study (GWAS) meta-analyses of up to 1,167 clinically relevant traits and diseases across 1,789,365 diverse individuals genetically similar to Admixed American (AMR, NMax = 60,756), African (AFR, NMax = 128,361), East Asian (EAS, NMax = 307,465), European (EUR, NMax = 1,283,907), and South Asian (SAS, NMax = 8,876) reference populations from the VA Million Veteran Program (MVP), UK Biobank (UKB), FinnGen, Biobank Japan (BBJ), Tohoku Medical Megabank (ToMMO), and Korean Genome and Epidemiology Study (KoGES). We identified 27,193 genome-wide significant locus-trait pairs (1MB region with PGWAMA < 5 × 10-8) in within-population analysis and 29,139 in multi-population analysis (PMR-MEGA < 5 × 10-8). Among these, 11.5% (n = 3,149) of locus-trait pairs in population-wise and 6.4% (n = 1,875) in multi-population analyses did not reach genome-wide significance in previously published GWAS. In aggregate, the genome-wide significant loci fell within 2,624 non-overlapping autosomal genomic windows on average ~600kb in size. Each locus contained genome-wide significant signals for a median of 6 traits (IQR 2 to 18), including 2,110 (80%) pleiotropic loci associated with >1 trait. Multi-trait colocalization identified 1,902 (72%) loci with high-confidence (posterior probability > 0.9) evidence of a shared causal variant across two or more traits. Variants in pleiotropic loci were significantly enriched for a broad spectrum of functional annotations compared to non-pleiotropic counterparts. Polygenic scores (PGS) developed from these data generally improved prediction compared to existing PGS and were broadly associated with both on- and off-target phenotypes. These results provide a contemporary map of genetic pleiotropy across the spectrum of human traits/diseases and genetic backgrounds.

全球生物库中近1000个性状的多效性全基因组评估
大规模的遗传关联研究已经确定了数千个性状相关的风险位点,为常见的复杂性状和疾病建立了多基因基础。尽管先前的研究表明,许多性状相关的位点是多效性的,但这种多效性在多大程度上反映了共同的因果变异或连锁不平衡引起的混淆,仍然没有得到很好的描述。为了确定一组具有潜在多向性关联的候选基因座,我们对1,789,365个不同个体的1,167个临床相关性状和疾病进行了全基因组关联研究(GWAS)荟萃分析,这些个体与来自VA百万退伍军人计划(MVP)的混合美国人(AMR, NMax = 60,756)、非洲人(AFR, NMax = 128,361)、东亚人(EAS, NMax = 307,465)、欧洲人(EUR, NMax = 1,283,907)和南亚人(SAS, NMax = 8,876)参考人群的遗传相似。英国生物银行(UKB)、芬兰生物银行(FinnGen)、日本生物银行(BBJ)、东北医学大银行(ToMMO)和韩国基因组与流行病学研究(KoGES)。我们在群体内分析中发现了27,193个全基因组显著的位点-性状对(1MB区域,PGWAMA < 5 × 10-8),在多群体分析中发现了29,139个显著的位点-性状对(PMR-MEGA < 5 × 10-8)。其中,11.5% (n = 3149)的种群位点-性状对和6.4% (n = 1875)的多种群位点-性状对在先前发表的GWAS中未达到全基因组显著性。总的来说,全基因组显著位点落在2,624个不重叠的常染色体基因组窗口内,平均大小约为600kb。每个位点中位数包含6个性状(IQR 2 ~ 18)的全基因组显著信号,其中与bbb1性状相关的多效位点为2110个(80%)。多性状共定位鉴定出1902个(72%)位点,具有高置信度(后验概率>.9)证据,表明两个或多个性状之间存在共同的因果变异。与非多效性位点相比,多效性位点的变异显著丰富,具有广谱的功能注释。与现有的多基因评分(PGS)相比,基于这些数据开发的多基因评分(PGS)总体上改善了预测,并且与靶标和脱靶表型广泛相关。这些结果提供了一个跨越人类特征/疾病和遗传背景的遗传多效性的当代图谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信