Non-rigid cutting characteristics and separation mechanisms of soft muscle tissue under waterjet impact.

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Jiaqi Zhao, Xiao-Fei Song, Xiaoxian Wei, Wenli Yu, Xiubing Jing
{"title":"Non-rigid cutting characteristics and separation mechanisms of soft muscle tissue under waterjet impact.","authors":"Jiaqi Zhao, Xiao-Fei Song, Xiaoxian Wei, Wenli Yu, Xiubing Jing","doi":"10.1177/09544119251333679","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle tissue is most frequently cut or separated in surgery. Waterjet as an emerging non-rigid cutting method is newly introduced into soft tissue dissection which shows a great potential in soft muscle cutting for low-trauma surgery. However, the cutting mechanisms of muscle material to waterjet impact remain unknown. This study reports the cutting responses of muscle tissue to waterjet impact. Waterjet morphology, depths of cut, cutting surface morphology and deformation of muscles were experimentally investigated using a computer-controlled waterjet machine. The mechanical properties of muscles were also measured to explore the property-processing relation. The conversion relationship between kinetic energy of waterjet and potential energy of muscle damage was established based on energy balance theory. Based on the experimental investigation and fracture mechanism analysis, the critical and the reasonable waterjet separation pressures for the muscles were respectively 0.8-1.1 MPa and 1.4-2.0 MPa for balancing separation efficiency and surrounding tissue protection. It was also found the muscle depth of cut under waterjet impact significantly increased with the impact pressure, but rapidly reduced with the increase in impact angle and transverse speed. In addition, a new phenomenon of swelling effect of the muscles was discovered in waterjet impact, which heavily affects the depths of cut. The proper stand-off distance was determined considering the muscle swelling effect and initial segment of waterjet. This research first provides practical insights into the process selection and quality control for waterjet cutting of soft muscles, advancing the clinical application of waterjet to muscle separation.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"485-497"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251333679","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Muscle tissue is most frequently cut or separated in surgery. Waterjet as an emerging non-rigid cutting method is newly introduced into soft tissue dissection which shows a great potential in soft muscle cutting for low-trauma surgery. However, the cutting mechanisms of muscle material to waterjet impact remain unknown. This study reports the cutting responses of muscle tissue to waterjet impact. Waterjet morphology, depths of cut, cutting surface morphology and deformation of muscles were experimentally investigated using a computer-controlled waterjet machine. The mechanical properties of muscles were also measured to explore the property-processing relation. The conversion relationship between kinetic energy of waterjet and potential energy of muscle damage was established based on energy balance theory. Based on the experimental investigation and fracture mechanism analysis, the critical and the reasonable waterjet separation pressures for the muscles were respectively 0.8-1.1 MPa and 1.4-2.0 MPa for balancing separation efficiency and surrounding tissue protection. It was also found the muscle depth of cut under waterjet impact significantly increased with the impact pressure, but rapidly reduced with the increase in impact angle and transverse speed. In addition, a new phenomenon of swelling effect of the muscles was discovered in waterjet impact, which heavily affects the depths of cut. The proper stand-off distance was determined considering the muscle swelling effect and initial segment of waterjet. This research first provides practical insights into the process selection and quality control for waterjet cutting of soft muscles, advancing the clinical application of waterjet to muscle separation.

水射流冲击下软肌肉组织的非刚性切割特性及分离机制。
肌肉组织在外科手术中最常被切开或分离。水射流作为一种新兴的非刚性切割方法,新近被引入到软组织解剖中,在低创伤外科软肌切割中显示出巨大的潜力。然而,肌肉材料在水射流冲击下的切割机制尚不清楚。本研究报告了肌肉组织对水射流冲击的切割反应。利用计算机控制的水射流机对水射流形貌、切割深度、切割表面形貌和肌肉变形进行了实验研究。测定了肌肉的力学性能,探讨了性能与加工的关系。基于能量平衡理论,建立了水射流动能与肌肉损伤势能的转换关系。基于实验研究和断裂机理分析,为平衡分离效率和保护周围组织,水射流对肌肉的临界分离压力为0.8 ~ 1.1 MPa,合理分离压力为1.4 ~ 2.0 MPa。水射流冲击下的肌肉切口深度随着冲击压力的增大而显著增大,但随着冲击角度和横向速度的增大而迅速减小。此外,在水射流冲击中还发现了一种新的肌肉肿胀现象,这种现象严重影响了切割深度。考虑肌肉肿胀效应和水射流初始段,确定合适的隔离距离。本研究首次为水射流切割软肌肉的工艺选择和质量控制提供了实践见解,推进了水射流在肌肉分离中的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信