{"title":"Emerging therapeutic strategies and opportunities in targeting protein pathways for breast cancer treatment: a critical review.","authors":"Panneerselvam Theivendren, Parasuraman Pavadai, Selvaraj Kunjiappan, Kaveena Ravi, Natarajan Kiruthiga, Kumarappan Chidamabaram, Shanmugarathinam Alagarsamy, Nagireddy Bhuvan Reddy","doi":"10.1088/1361-6528/add6ae","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding breast cancer at a molecular level is essential for developing effective treatments due to its significant impact on women's mortality rates globally. Targeted medicines focus on specific proteins crucial to breast cancer progression, offering a promising treatment avenue. These proteins, often overexpressed or mutated in cancer cells, are vital for cell proliferation, division, and survival. Targeted drugs aim to inhibit these proteins, halting disease progression and sparing non-cancerous cells, which reduces side effects and improves patient quality of life. Key proteins in breast cancer treatment include HER2 (human epidermal growth factor receptor 2), ER (estrogen receptor), and PR (progesterone receptor). Drugs like Trastuzumab target HER2 to impede tumor growth in HER2-positive cancers, while hormone therapies targeting ER and PR improve outcomes for hormone receptor-positive cancers. Examining proteins such as EGFR, HER2/Neu, and ER reveals their roles in cancer pathways, with pathways like PI3K/Akt/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin) and MAPK (mitogen-activated protein kinase) being crucial targets for therapies, potentially revolutionizing breast cancer treatment.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/add6ae","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding breast cancer at a molecular level is essential for developing effective treatments due to its significant impact on women's mortality rates globally. Targeted medicines focus on specific proteins crucial to breast cancer progression, offering a promising treatment avenue. These proteins, often overexpressed or mutated in cancer cells, are vital for cell proliferation, division, and survival. Targeted drugs aim to inhibit these proteins, halting disease progression and sparing non-cancerous cells, which reduces side effects and improves patient quality of life. Key proteins in breast cancer treatment include HER2 (human epidermal growth factor receptor 2), ER (estrogen receptor), and PR (progesterone receptor). Drugs like Trastuzumab target HER2 to impede tumor growth in HER2-positive cancers, while hormone therapies targeting ER and PR improve outcomes for hormone receptor-positive cancers. Examining proteins such as EGFR, HER2/Neu, and ER reveals their roles in cancer pathways, with pathways like PI3K/Akt/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin) and MAPK (mitogen-activated protein kinase) being crucial targets for therapies, potentially revolutionizing breast cancer treatment.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.