Characterization of excitatory synaptic transmission in the retrosplenial cortex of adult mice.

IF 2.8 3区 医学 Q2 NEUROSCIENCES
Molecular Pain Pub Date : 2025-01-01 Epub Date: 2025-05-03 DOI:10.1177/17448069251335500
Jinjin Wan, Yujie Ma, Xuanying Chen, Wucheng Tao, Shun Hao, Wujun Geng, Yili Wu, Min Zhuo
{"title":"Characterization of excitatory synaptic transmission in the retrosplenial cortex of adult mice.","authors":"Jinjin Wan, Yujie Ma, Xuanying Chen, Wucheng Tao, Shun Hao, Wujun Geng, Yili Wu, Min Zhuo","doi":"10.1177/17448069251335500","DOIUrl":null,"url":null,"abstract":"<p><p>The retrosplenial cortex (RSC) plays an important role in navigation, memory and pain. However, there are few studies on excitatory synaptic transmission in the RSC. Here, we used a multi-electrode array recording system (MED64) to study the characteristics of excitatory synaptic transmission in the RSC and the contribution of different types of voltage-gated Ca<sup>2+</sup> channels (VGCCs) in excitatory synaptic transmission. We found that glutamate is the major excitatory transmitter for RSC, and postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors contribute to excitatory synaptic transmission. We also found that the N-type calcium channel blocker ω-conotoxin GVIA (ω-Ctx GVIA) had an inhibitory effect on basal synaptic transmission. The inhibitory effect was not consistent across channels, suggesting the actions effect of N-type VGCCs in RSC was inhomogeneous in spatial distribution. Our findings provide strong evidence that excitatory synaptic transmission in the RSC is mainly mediated by AMPA receptors and that N-type VGCCs mediate fast synaptic transmission in the RSC of adult mice.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251335500"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12171265/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069251335500","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The retrosplenial cortex (RSC) plays an important role in navigation, memory and pain. However, there are few studies on excitatory synaptic transmission in the RSC. Here, we used a multi-electrode array recording system (MED64) to study the characteristics of excitatory synaptic transmission in the RSC and the contribution of different types of voltage-gated Ca2+ channels (VGCCs) in excitatory synaptic transmission. We found that glutamate is the major excitatory transmitter for RSC, and postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors contribute to excitatory synaptic transmission. We also found that the N-type calcium channel blocker ω-conotoxin GVIA (ω-Ctx GVIA) had an inhibitory effect on basal synaptic transmission. The inhibitory effect was not consistent across channels, suggesting the actions effect of N-type VGCCs in RSC was inhomogeneous in spatial distribution. Our findings provide strong evidence that excitatory synaptic transmission in the RSC is mainly mediated by AMPA receptors and that N-type VGCCs mediate fast synaptic transmission in the RSC of adult mice.

成年小鼠脾后皮层兴奋性突触传递的表征。
脾后皮层(RSC)在导航、记忆和疼痛中起着重要作用。然而,关于RSC兴奋性突触传递的研究很少。本研究利用多电极阵列记录系统(MED64)研究了RSC中兴奋性突触传递的特征,以及不同类型的电压门控Ca2+通道(VGCCs)在兴奋性突触传递中的作用。我们发现谷氨酸是RSC的主要兴奋性递质,突触后α -氨基-3-羟基-5-甲基-4-异氧唑丙酸(AMPA)受体参与兴奋性突触传递。我们还发现n型钙通道阻滞剂ω- concontoxin GVIA (ω-Ctx GVIA)对基底突触传递有抑制作用。不同通道的抑制作用并不一致,表明这些兴奋性突触对突触前n型VGCCs的贡献是不均匀的。我们的研究结果有力地证明了RSC中的兴奋性突触传递主要是由AMPA受体介导的,而n型VGCCs介导了成年小鼠RSC中的快速突触传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pain
Molecular Pain 医学-神经科学
CiteScore
5.60
自引率
3.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信