Optimized expansion microscopy reveals species-specific spindle microtubule organization in Xenopus egg extracts.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY
Molecular Biology of the Cell Pub Date : 2025-06-01 Epub Date: 2025-05-06 DOI:10.1091/mbc.E24-09-0421
Gabriel Guilloux, Maiko Kitaoka, Karel Mocaer, Claire Heichette, Laurence Duchesne, Rebecca Heald, Thierry Pecot, Romain Gibeaux
{"title":"Optimized expansion microscopy reveals species-specific spindle microtubule organization in <i>Xenopus</i> egg extracts.","authors":"Gabriel Guilloux, Maiko Kitaoka, Karel Mocaer, Claire Heichette, Laurence Duchesne, Rebecca Heald, Thierry Pecot, Romain Gibeaux","doi":"10.1091/mbc.E24-09-0421","DOIUrl":null,"url":null,"abstract":"<p><p>The spindle is key to cell division, ensuring accurate chromosome segregation. Although its assembly and function are well studied, the mechanisms regulating spindle architecture remain elusive. Here, we investigate spindle organization differences between <i>Xenopus laevis</i> and <i>tropicalis</i>, leveraging expansion microscopy (ExM) to overcome conventional imaging limitations. We optimized an ExM protocol tailored for <i>Xenopus</i> egg extract spindles, refining fixation, denaturation, and gelation to achieve higher resolution while preserving spindle integrity. Our protocol enables preexpansion immunofluorescence and is seamlessly compatible with both species. To quantitatively compare microtubule organization in expanded spindles between the two species, we developed an analysis pipeline that is able to characterize microtubule bundles throughout spindles. We show that <i>X. laevis</i> spindles exhibit overall a broader range of bundle sizes, while <i>X. tropicalis</i> spindles contain mostly smaller bundles. Although both species show larger bundles near the spindle center, <i>X. tropicalis</i> spindles otherwise consist of very small bundles, whereas <i>X. laevis</i> spindles contain more medium-sized bundles. Altogether, our work reveals species-specific spindle architectures and suggests their adaptation to the different spindle size and chromatin amount. By enhancing resolution and minimizing artifacts, our ExM approach provides new insights into spindle morphology and a robust tool for further studying these large cellular assemblies.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar73"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-09-0421","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The spindle is key to cell division, ensuring accurate chromosome segregation. Although its assembly and function are well studied, the mechanisms regulating spindle architecture remain elusive. Here, we investigate spindle organization differences between Xenopus laevis and tropicalis, leveraging expansion microscopy (ExM) to overcome conventional imaging limitations. We optimized an ExM protocol tailored for Xenopus egg extract spindles, refining fixation, denaturation, and gelation to achieve higher resolution while preserving spindle integrity. Our protocol enables preexpansion immunofluorescence and is seamlessly compatible with both species. To quantitatively compare microtubule organization in expanded spindles between the two species, we developed an analysis pipeline that is able to characterize microtubule bundles throughout spindles. We show that X. laevis spindles exhibit overall a broader range of bundle sizes, while X. tropicalis spindles contain mostly smaller bundles. Although both species show larger bundles near the spindle center, X. tropicalis spindles otherwise consist of very small bundles, whereas X. laevis spindles contain more medium-sized bundles. Altogether, our work reveals species-specific spindle architectures and suggests their adaptation to the different spindle size and chromatin amount. By enhancing resolution and minimizing artifacts, our ExM approach provides new insights into spindle morphology and a robust tool for further studying these large cellular assemblies.

优化的扩展显微镜揭示了非洲爪蟾卵提取物中特定物种的纺锤体微管组织。
纺锤体是细胞分裂的关键,保证了染色体的准确分离。虽然其组装和功能研究得很好,但调节主轴结构的机制仍然难以捉摸。在这里,我们研究非洲爪蟾和热带爪蟾纺锤体组织的差异,利用扩展显微镜(ExM)来克服传统的成像限制。我们优化了针对爪蟾卵提取液纺锤体定制的ExM方案,改进了固定、变性和凝胶化,以获得更高的分辨率,同时保持纺锤体的完整性。我们的方案可实现预膨胀免疫荧光,并与两种物种无缝兼容。为了定量地比较两个物种之间扩展纺锤体中的微管组织,我们开发了一个分析管道,能够表征整个纺锤体中的微管束。我们发现,野桫椤纺锤体总体上呈现出更广泛的束大小范围,而热带桫椤纺锤体大多包含较小的束。虽然两种植物的纺锤体中心附近都有较大的纺锤体束,但热带棘猴的纺锤体由非常小的纺锤体束组成,而热带棘猴的纺锤体则包含更多的中等大小的纺锤体束。总之,我们的工作揭示了物种特异性纺锤体结构,并表明它们适应不同的纺锤体大小和染色质数量。通过提高分辨率和最小化伪影,我们的ExM方法提供了对纺锤体形态的新见解,并为进一步研究这些大型细胞组件提供了强大的工具。[媒体:见文][媒体:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信