M. tuberculosis surface sulfoglycolipid SL-1 activates the mechanosensitive channel TRPV4 to enhance lysosomal biogenesis and exocytosis in macrophages.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY
Molecular Biology of the Cell Pub Date : 2025-06-01 Epub Date: 2025-04-30 DOI:10.1091/mbc.E24-12-0560
Ibrahim Umar, Shah-E-Jahan Gulzar, Varadharajan Sundaramurthy
{"title":"<i>M. tuberculosis</i> surface sulfoglycolipid SL-1 activates the mechanosensitive channel TRPV4 to enhance lysosomal biogenesis and exocytosis in macrophages.","authors":"Ibrahim Umar, Shah-E-Jahan Gulzar, Varadharajan Sundaramurthy","doi":"10.1091/mbc.E24-12-0560","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular pathogens manipulate host cellular pathways to ensure their survival. <i>Mycobacterium tuberculosis</i> (Mtb) disrupts phagosomal trafficking to prevent fusion with lysosomes. Beyond this localized effect, Mtb globally remodels the host lysosomal system, predominantly through its virulence-associated surface lipid, sulfolipid-1 (SL-1). SL-1 enhances lysosomal biogenesis via the mTORC1-TFEB axis; however, the upstream mediators remain unknown. Here, we show that SL-1 induces calcium influx into macrophages and identify the mechanosensitive calcium channel transient receptor potential vanilloid subtype 4 (TRPV4) as a crucial upstream mediator of SL-1-induced lysosomal remodeling. TRPV4 influences multiple aspects of lysosomal function, including biogenesis, acidification, enzymatic activity, phagosome maturation, and lysosomal exocytosis. These effects are recapitulated during Mtb infection, underscoring the relevance of SL-1- and TRPV4-dependent lysosomal remodeling in an infection context. TRPV4 expression is upregulated during Mtb infection and partially localizes to both lysosomes and the Mtb-containing vacuole. Remarkably, TRPV4 activation, independent of SL-1, is sufficient to enhance lysosomal biogenesis, identifying TRPV4 as a key regulator of lysosomal homeostasis. Together, these findings uncover a novel mechanism of lysosomal remodeling driven by a pathogen lipid virulence factor and reveal a previously unrecognized role for TRPV4 in modulating lysosomal homeostasis in macrophages.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar76"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-12-0560","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intracellular pathogens manipulate host cellular pathways to ensure their survival. Mycobacterium tuberculosis (Mtb) disrupts phagosomal trafficking to prevent fusion with lysosomes. Beyond this localized effect, Mtb globally remodels the host lysosomal system, predominantly through its virulence-associated surface lipid, sulfolipid-1 (SL-1). SL-1 enhances lysosomal biogenesis via the mTORC1-TFEB axis; however, the upstream mediators remain unknown. Here, we show that SL-1 induces calcium influx into macrophages and identify the mechanosensitive calcium channel transient receptor potential vanilloid subtype 4 (TRPV4) as a crucial upstream mediator of SL-1-induced lysosomal remodeling. TRPV4 influences multiple aspects of lysosomal function, including biogenesis, acidification, enzymatic activity, phagosome maturation, and lysosomal exocytosis. These effects are recapitulated during Mtb infection, underscoring the relevance of SL-1- and TRPV4-dependent lysosomal remodeling in an infection context. TRPV4 expression is upregulated during Mtb infection and partially localizes to both lysosomes and the Mtb-containing vacuole. Remarkably, TRPV4 activation, independent of SL-1, is sufficient to enhance lysosomal biogenesis, identifying TRPV4 as a key regulator of lysosomal homeostasis. Together, these findings uncover a novel mechanism of lysosomal remodeling driven by a pathogen lipid virulence factor and reveal a previously unrecognized role for TRPV4 in modulating lysosomal homeostasis in macrophages.

结核分枝杆菌表面巯基糖脂SL-1激活机械敏感通道TRPV4,促进巨噬细胞溶酶体生物生成和胞吐。
细胞内病原体操纵宿主细胞通路以确保其存活。结核分枝杆菌(Mtb)破坏吞噬体运输以防止与溶酶体融合。除了这种局部作用外,结核分枝杆菌主要通过其毒力相关的表面脂质,硫脂-1 (SL-1),在全球范围内重塑宿主溶酶体系统。SL-1通过mTORC1-TFEB轴促进溶酶体生物发生;然而,上游介质仍然未知。本研究表明,SL-1诱导钙流入巨噬细胞,并确定机械敏感钙通道TRPV4是SL-1诱导溶酶体重构的重要上游介质。TRPV4影响溶酶体功能的多个方面,包括生物发生、酸化、酶活性、吞噬体成熟和溶酶体胞吐。这些影响在结核分枝杆菌感染期间重现,强调了在感染背景下SL-1和trpv4依赖性溶酶体重塑的相关性。在结核分枝杆菌感染期间,TRPV4表达上调,部分定位于溶酶体和含结核分枝杆菌的液泡。值得注意的是,独立于SL-1的TRPV4激活足以增强溶酶体的生物发生,这表明TRPV4是溶酶体稳态的关键调节因子。总之,这些发现揭示了由病原体脂质毒力因子驱动的溶酶体重塑的新机制,并揭示了TRPV4在巨噬细胞中调节溶酶体稳态的先前未被认识的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信