Samir Rosas, Wihan Adi, Aidana Beisenova, Shovasis Kumar Biswas, Furkan Kuruoglu, Hongyan Mei, Mikhail A Kats, David A Czaplewski, Yuri S Kivshar, Filiz Yesilkoy
{"title":"Enhanced biochemical sensing with high-Q transmission resonances in free-standing membrane metasurfaces.","authors":"Samir Rosas, Wihan Adi, Aidana Beisenova, Shovasis Kumar Biswas, Furkan Kuruoglu, Hongyan Mei, Mikhail A Kats, David A Czaplewski, Yuri S Kivshar, Filiz Yesilkoy","doi":"10.1364/optica.549393","DOIUrl":null,"url":null,"abstract":"<p><p>Optical metasurfaces provide novel solutions to label-free biochemical sensing by localizing light resonantly beyond the diffraction limit, thereby selectively enhancing light-matter interactions for improved analytical performance. However, high-Q resonances in metasurfaces are usually achieved in the reflection mode, which impedes metasurface integration into compact imaging systems. Here, we demonstrate a novel metasurface platform for advanced biochemical sensing based on the physics of the bound states in the continuum (BIC) and electromagnetically induced transparency (EIT) modes, which arise when two interfering resonances from a periodic pattern of tilted elliptic holes overlap both spectrally and spatially, creating a narrow transparency window in the mid-infrared spectrum. We experimentally measure these resonant peaks observed in transmission mode (Q~734 @ <i>λ</i>~8.8 μ<i>m</i>) in free-standing silicon membranes and confirm their tunability through geometric scaling. We also demonstrate the strong coupling of the BIC-EIT modes with a thinly coated PMMA film on the metasurface, characterized by a large Rabi splitting (32 cm<sup>-1</sup>) and biosensing of protein monolayers in transmission mode. Our new photonic platform can facilitate the integration of metasurface biochemical sensors into compact and monolithic optical systems while being compatible with scalable manufacturing, thereby clearing the way for on-site biochemical sensing in everyday applications.</p>","PeriodicalId":19515,"journal":{"name":"Optica","volume":"12 2","pages":"178-189"},"PeriodicalIF":8.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11999634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.549393","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical metasurfaces provide novel solutions to label-free biochemical sensing by localizing light resonantly beyond the diffraction limit, thereby selectively enhancing light-matter interactions for improved analytical performance. However, high-Q resonances in metasurfaces are usually achieved in the reflection mode, which impedes metasurface integration into compact imaging systems. Here, we demonstrate a novel metasurface platform for advanced biochemical sensing based on the physics of the bound states in the continuum (BIC) and electromagnetically induced transparency (EIT) modes, which arise when two interfering resonances from a periodic pattern of tilted elliptic holes overlap both spectrally and spatially, creating a narrow transparency window in the mid-infrared spectrum. We experimentally measure these resonant peaks observed in transmission mode (Q~734 @ λ~8.8 μm) in free-standing silicon membranes and confirm their tunability through geometric scaling. We also demonstrate the strong coupling of the BIC-EIT modes with a thinly coated PMMA film on the metasurface, characterized by a large Rabi splitting (32 cm-1) and biosensing of protein monolayers in transmission mode. Our new photonic platform can facilitate the integration of metasurface biochemical sensors into compact and monolithic optical systems while being compatible with scalable manufacturing, thereby clearing the way for on-site biochemical sensing in everyday applications.
期刊介绍:
Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.