Integrated review of Psathyrostachy huashanica: From phylogenetic research to wheat breeding application.

IF 2.6 3区 农林科学 Q1 AGRONOMY
Molecular Breeding Pub Date : 2025-04-08 eCollection Date: 2025-04-01 DOI:10.1007/s11032-025-01563-3
Yinghui Li, Binwen Tan, Jingyuan Yang, Hao Zhang, Wei Zhu, Lili Xu, Yiran Cheng, Yi Wang, Jian Zeng, Lina Sha, Haiqin Zhang, Xing Fan, Yonghong Zhou, Dandan Wu, Houyang Kang
{"title":"Integrated review of <i>Psathyrostachy huashanica</i>: From phylogenetic research to wheat breeding application.","authors":"Yinghui Li, Binwen Tan, Jingyuan Yang, Hao Zhang, Wei Zhu, Lili Xu, Yiran Cheng, Yi Wang, Jian Zeng, Lina Sha, Haiqin Zhang, Xing Fan, Yonghong Zhou, Dandan Wu, Houyang Kang","doi":"10.1007/s11032-025-01563-3","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing wheat yield and stress tolerance is a critical long-term objective for global food security. Historically, breeders selected genetic traits from wild wheat relatives for domesticated targets, such as non-shattering and free threshing characteristics, and developed the cultivated wheat. However, the genetic diversity of the cultivated wheat has become narrow after long-term domestication and conscious selection, which seriously limited the yield potential and stress tolerance. Therefore, using wild Triticeae species to broaden the gene pool is an ongoing task for wheat improvement. <i>Psathyrostachy huashanica</i> Keng ex P. C. Kuo (2n = 2<i>x</i> = 14, NsNs), a perennial species of the genus <i>Psathyrostachys</i> Nevski, is restrictively distributed in the Huashan Mountain region of Shaanxi province, China. <i>P. huashanica</i> exhibits considerable potential for wheat breeding due to its valuable agronomic traits such as early maturation, more tillers, abiotic tolerance, and biotic resistance. Over the past four decades, researchers have successfully crossed <i>P. huashanica</i> with common wheat and developed derivative lines with improved agronomic traits. Here, we summarized the morphology, genomic evolution, and derived wheat breeding lines with advanced agronomic characteristics inherited from <i>P. huashanica</i>. This review provides a useful guideline for future research on <i>P. huashanica</i>, and highlights its importance in wheat breeding.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 4","pages":"42"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11979048/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01563-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing wheat yield and stress tolerance is a critical long-term objective for global food security. Historically, breeders selected genetic traits from wild wheat relatives for domesticated targets, such as non-shattering and free threshing characteristics, and developed the cultivated wheat. However, the genetic diversity of the cultivated wheat has become narrow after long-term domestication and conscious selection, which seriously limited the yield potential and stress tolerance. Therefore, using wild Triticeae species to broaden the gene pool is an ongoing task for wheat improvement. Psathyrostachy huashanica Keng ex P. C. Kuo (2n = 2x = 14, NsNs), a perennial species of the genus Psathyrostachys Nevski, is restrictively distributed in the Huashan Mountain region of Shaanxi province, China. P. huashanica exhibits considerable potential for wheat breeding due to its valuable agronomic traits such as early maturation, more tillers, abiotic tolerance, and biotic resistance. Over the past four decades, researchers have successfully crossed P. huashanica with common wheat and developed derivative lines with improved agronomic traits. Here, we summarized the morphology, genomic evolution, and derived wheat breeding lines with advanced agronomic characteristics inherited from P. huashanica. This review provides a useful guideline for future research on P. huashanica, and highlights its importance in wheat breeding.

从系统发育研究到小麦育种应用综述。
提高小麦产量和抗逆性是全球粮食安全的一项重要长期目标。历史上,育种者从野生小麦近缘种中选择遗传性状作为驯化目标,如不碎粒和自由脱粒特性,并开发栽培小麦。然而,经过长期驯化和自觉选择,栽培小麦的遗传多样性变得狭窄,严重限制了产量潜力和抗逆性。因此,利用野生小麦品种扩大小麦的基因库是小麦改良的一项长期任务。Psathyrostachy huashanica Keng ex P. C. Kuo (2n = 2x = 14, NsNs)是Psathyrostachys Nevski属的多年生种,限制性地分布于陕西省华山地区。由于其早熟、分蘖多、非生物耐受性和生物抗性等重要农艺性状,在小麦育种中具有相当大的潜力。在过去的40年里,研究人员成功地将花山小麦与普通小麦杂交,并开发出具有改良农艺性状的衍生品系。本文综述了花山小麦的形态、基因组进化及其衍生的具有先进农艺性状的小麦选育品系。本文综述为今后花山假单胞菌的研究提供了有益的指导,并强调了其在小麦育种中的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信