{"title":"Impacts of type 1 diabetes mellitus on male fertility and embryo quality in superovulated mice.","authors":"Begum Alyürük, Yusufhan Yazir, Zeynep Ece Utkan Korun, Özcan Budak, Ender Yalçinkaya Kalyan, Kamil Can Kiliç","doi":"10.1016/j.tice.2025.102941","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We aimed to compare embryo quality, sperm morphology, motility, and fertilization obtained from male mice with type 1 diabetes mellitus (T1DM) induced by streptozotocin (STZ) in control and diabetic mice undergoing in vitro fertilization (IVF).</p><p><strong>Methods: </strong>CD-1 male mice were divided into control and DM groups, with an i.p. injection of 100 mg/kg STZ to induce T1DM. One month later, the mice were euthanized to investigate the effects of STZ-induced T1DM on the reproductive system. Sperms were obtained from the epididymis and vas deferens. The morphology and motility of the cells were evaluated. Follicle development was stimulated by controlled ovarian stimulation, and oocytes were collected by extracting oviducts and ovaries from female mice housed under controlled environmental conditions with ad libitum access. Both groups underwent IVF with fertilized zygotes followed up until the third day before embryo quality was compared.</p><p><strong>Results: </strong>Female mice bred with diabetic males exhibited significantly lower fertilization rates than the controls (p < 0.05). Sperm from diabetic mice displayed abnormalities in shape and movement, with reduced motility and fertilization. Embryos from male diabetic mice exhibited a higher incidence of developmental arrest during early embryogenesis. Although no significant differences in oocyte quality were observed, embryos from diabetic mice exhibited higher growth rates. These findings highlighted the T1DM's detrimental effects on sperm morphology, motility, fertilization, and early embryonic development, thus contributing to our understanding of reproductive complications.</p><p><strong>Conclusion: </strong>In conclusion, our findings demonstrated that T1DM significantly impaired sperm morphology, motility, and fertilization capacity, leading to reduced embryo quality and increased developmental arrest. These results highlight the detrimental impact of DM on male reproductive potential and underscore the importance of glycemic control in optimizing outcomes in assisted reproductive techniques such as IVF.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"95 ","pages":"102941"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2025.102941","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: We aimed to compare embryo quality, sperm morphology, motility, and fertilization obtained from male mice with type 1 diabetes mellitus (T1DM) induced by streptozotocin (STZ) in control and diabetic mice undergoing in vitro fertilization (IVF).
Methods: CD-1 male mice were divided into control and DM groups, with an i.p. injection of 100 mg/kg STZ to induce T1DM. One month later, the mice were euthanized to investigate the effects of STZ-induced T1DM on the reproductive system. Sperms were obtained from the epididymis and vas deferens. The morphology and motility of the cells were evaluated. Follicle development was stimulated by controlled ovarian stimulation, and oocytes were collected by extracting oviducts and ovaries from female mice housed under controlled environmental conditions with ad libitum access. Both groups underwent IVF with fertilized zygotes followed up until the third day before embryo quality was compared.
Results: Female mice bred with diabetic males exhibited significantly lower fertilization rates than the controls (p < 0.05). Sperm from diabetic mice displayed abnormalities in shape and movement, with reduced motility and fertilization. Embryos from male diabetic mice exhibited a higher incidence of developmental arrest during early embryogenesis. Although no significant differences in oocyte quality were observed, embryos from diabetic mice exhibited higher growth rates. These findings highlighted the T1DM's detrimental effects on sperm morphology, motility, fertilization, and early embryonic development, thus contributing to our understanding of reproductive complications.
Conclusion: In conclusion, our findings demonstrated that T1DM significantly impaired sperm morphology, motility, and fertilization capacity, leading to reduced embryo quality and increased developmental arrest. These results highlight the detrimental impact of DM on male reproductive potential and underscore the importance of glycemic control in optimizing outcomes in assisted reproductive techniques such as IVF.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.