{"title":"Bioactive Flavonoids and Phenolic Acids of Petroselinum Crispum as a Potential Inhibitor of α-amylase: An in silico Evaluation.","authors":"Ishita Biswas, Trishanjan Biswas, Debanjan Mitra","doi":"10.2174/0115701638361734250414033830","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type II diabetes mellitus is treated as one of the detrimental diseases and the drugs used for its treatment often lead to several side effects. Therefore, herbal medication of plant origin with lesser offshoot is a significant concern. Petroselinum crispum is a plant of pharma-ceutical interest. The present work aims to explore the potentiality assessment of flavonoids of Pe-troselinum crispum as an α-amylase inhibitor.</p><p><strong>Methods: </strong>Compounds were extracted from the database and evaluated through drug likeliness prop-erties, ADMET and toxicity assessment. Molecular docking was done to identify the best ligand, and the dynamics simulation study was performed with the leading ligand-protein complex.</p><p><strong>Results: </strong>Amongst the 15 bioactive compounds, apigenin appeared as the best ligand among all the studied compounds. Moreover, drug likeliness, physiochemical characteristics, and ADMET anal-yses revealed that apigenin does not deviate from Lipiniski's rule of five. Non-toxic apigenin showed a satisfactory docking score of -9.5 kcal/mol with human pancreatic α-amylase compared to the ref-erence molecule acarbose. Apigenin- α-amylase complex and apoprotein were subjected to 100ns molecular dynamics simulation to analyze the stability of the docked protein-ligand complex. The values of RMSD, RMSF, Rg, SASA and hydrogen bonding of the screened complexes showed high stability and less fluctuations of the apigenin- α-amylase complex.</p><p><strong>Conclusion: </strong>This finding suggests apigenin as alternative therapeutics in treating diabetes mellitus by targeting the enzyme α-amylase which can be used for in vitro cross-validation studies. This study is the first documentation of the antidiabetic potentiality of the flavonoid compounds of Petroselinum crispum through in silico investigation.</p>","PeriodicalId":93962,"journal":{"name":"Current drug discovery technologies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug discovery technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115701638361734250414033830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Type II diabetes mellitus is treated as one of the detrimental diseases and the drugs used for its treatment often lead to several side effects. Therefore, herbal medication of plant origin with lesser offshoot is a significant concern. Petroselinum crispum is a plant of pharma-ceutical interest. The present work aims to explore the potentiality assessment of flavonoids of Pe-troselinum crispum as an α-amylase inhibitor.
Methods: Compounds were extracted from the database and evaluated through drug likeliness prop-erties, ADMET and toxicity assessment. Molecular docking was done to identify the best ligand, and the dynamics simulation study was performed with the leading ligand-protein complex.
Results: Amongst the 15 bioactive compounds, apigenin appeared as the best ligand among all the studied compounds. Moreover, drug likeliness, physiochemical characteristics, and ADMET anal-yses revealed that apigenin does not deviate from Lipiniski's rule of five. Non-toxic apigenin showed a satisfactory docking score of -9.5 kcal/mol with human pancreatic α-amylase compared to the ref-erence molecule acarbose. Apigenin- α-amylase complex and apoprotein were subjected to 100ns molecular dynamics simulation to analyze the stability of the docked protein-ligand complex. The values of RMSD, RMSF, Rg, SASA and hydrogen bonding of the screened complexes showed high stability and less fluctuations of the apigenin- α-amylase complex.
Conclusion: This finding suggests apigenin as alternative therapeutics in treating diabetes mellitus by targeting the enzyme α-amylase which can be used for in vitro cross-validation studies. This study is the first documentation of the antidiabetic potentiality of the flavonoid compounds of Petroselinum crispum through in silico investigation.