Michael J Song, Yanã C Rizzieri, Fay-Wei Li, Forrest Freund, Merly Escalona, Erin Toffelmier, Courtney Miller, H Bradley Shaffer, Oanh Nguyen, Mohan P A Marimuthu, Noravit Chumchim, Carrie Tribble, Colin W Fairbairn, William Seligmann, Carl J Rothfels
{"title":"\"The genome assembly of the duckweed fern, Azolla caroliniana\".","authors":"Michael J Song, Yanã C Rizzieri, Fay-Wei Li, Forrest Freund, Merly Escalona, Erin Toffelmier, Courtney Miller, H Bradley Shaffer, Oanh Nguyen, Mohan P A Marimuthu, Noravit Chumchim, Carrie Tribble, Colin W Fairbairn, William Seligmann, Carl J Rothfels","doi":"10.1093/jhered/esaf022","DOIUrl":null,"url":null,"abstract":"<p><p>Azolla is a genus of freshwater ferns that is economically important as a nitrogen-fixing biofertilizer, biofuel, bioremediator, and for potential carbon sequestration, but also contains weedy invasive species. In California, only two species are currently recognized but the actual diversity may include up to six species, with the discrepancy being due to the difficulty in identifying taxa, hybridization, and the introduction of non-native species. Here, we report a new haplotype-resolved, chromosome-level assembly and annotation of Azolla caroliniana as part of the California Conservation Genomics Project (CCGP), using a combination of PacBio HiFi and Omni-C sequencing technologies. The assembly is 521 Mb in length, with a contig N50 of 1.6 Mb, and is scaffolded into 22 pseudo-chromosomes. A total of 21,848 protein-coding genes was predicted with a BUSCO completeness score of 89.88%. In combination with the previously published A. filiculoides genome, this A. caroliniana genome will be a powerful tool for understanding the population genetics and taxonomy of one of the most cryptic, economically important, and poorly circumscribed fern taxa, and for facilitating land plant genomics more broadly.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jhered/esaf022","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Azolla is a genus of freshwater ferns that is economically important as a nitrogen-fixing biofertilizer, biofuel, bioremediator, and for potential carbon sequestration, but also contains weedy invasive species. In California, only two species are currently recognized but the actual diversity may include up to six species, with the discrepancy being due to the difficulty in identifying taxa, hybridization, and the introduction of non-native species. Here, we report a new haplotype-resolved, chromosome-level assembly and annotation of Azolla caroliniana as part of the California Conservation Genomics Project (CCGP), using a combination of PacBio HiFi and Omni-C sequencing technologies. The assembly is 521 Mb in length, with a contig N50 of 1.6 Mb, and is scaffolded into 22 pseudo-chromosomes. A total of 21,848 protein-coding genes was predicted with a BUSCO completeness score of 89.88%. In combination with the previously published A. filiculoides genome, this A. caroliniana genome will be a powerful tool for understanding the population genetics and taxonomy of one of the most cryptic, economically important, and poorly circumscribed fern taxa, and for facilitating land plant genomics more broadly.
期刊介绍:
Over the last 100 years, the Journal of Heredity has established and maintained a tradition of scholarly excellence in the publication of genetics research. Virtually every major figure in the field has contributed to the journal.
Established in 1903, Journal of Heredity covers organismal genetics across a wide range of disciplines and taxa. Articles include such rapidly advancing fields as conservation genetics of endangered species, population structure and phylogeography, molecular evolution and speciation, molecular genetics of disease resistance in plants and animals, genetic biodiversity and relevant computer programs.