Maximiliano Martinez-Cordera, Takaomi Sakai, Minoru Saitoe, Kohei Ueno
{"title":"Comparative experience shapes sucrose preference through memory in Drosophila.","authors":"Maximiliano Martinez-Cordera, Takaomi Sakai, Minoru Saitoe, Kohei Ueno","doi":"10.1186/s13041-025-01202-0","DOIUrl":null,"url":null,"abstract":"<p><p>Selection of appropriate food is an ability that allows animals to make optimal foraging choices. However, the neural mechanisms that control this food selection remain unclear. The purpose of this study was to investigate the connection between memory and the feeding behavior of Drosophila melanogaster when two sucrose solutions with different concentrations are available. We placed flies into plates with 150 mM and 100 mM sucrose solutions and measured the preference for the 150 mM one. Flies preferred the 150 mM solution over the 100 mM when all 60 wells of the plate were filled with both solutions; this preference decreased when there were only 8 wells with food. Remarkably, prior exposure to a plate with all 60 wells filled with both solutions enhanced the preference for the 150 mM, even when there were only 8 wells with food. We found that the memory-related gene rut and the dopamine D1 receptor on the mushroom body were required to enhance the preference after the prior exposure. These findings show that memory acquired through experiencing both solutions is stored in the mushroom body optimizing the food selection process.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"32"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01202-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Selection of appropriate food is an ability that allows animals to make optimal foraging choices. However, the neural mechanisms that control this food selection remain unclear. The purpose of this study was to investigate the connection between memory and the feeding behavior of Drosophila melanogaster when two sucrose solutions with different concentrations are available. We placed flies into plates with 150 mM and 100 mM sucrose solutions and measured the preference for the 150 mM one. Flies preferred the 150 mM solution over the 100 mM when all 60 wells of the plate were filled with both solutions; this preference decreased when there were only 8 wells with food. Remarkably, prior exposure to a plate with all 60 wells filled with both solutions enhanced the preference for the 150 mM, even when there were only 8 wells with food. We found that the memory-related gene rut and the dopamine D1 receptor on the mushroom body were required to enhance the preference after the prior exposure. These findings show that memory acquired through experiencing both solutions is stored in the mushroom body optimizing the food selection process.
期刊介绍:
Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings.
Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.