{"title":"Design and Driving Characteristics of a Bidirectional Micro-Device Based on Multi-Electrothermal Co-Actuation.","authors":"Yujuan Tang, Zihao Guo, Yujiao Ding, Xinjie Wang","doi":"10.3390/mi16040487","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a bidirectional micro-device based on multi-electrothermal co-actuation is proposed for a fuze safety system, combining the advantages of the simple structure, small size, low input voltage, large output, and absence of electromagnetic interference in electrothermal actuators. Based on the working principle of the multi-electrothermal co-actuation device and the mathematical model of the single V-shaped electrothermal actuator established in this paper, the temperature distribution of the V-shaped electrothermal actuator is simulated. In addition, the dynamic response and the effect of geometric factors on the output performance of the multi-electrothermal co-actuation device are analyzed in detail. Furthermore, driving characteristics tests of the electrothermal micro-device are carried out. The experimental findings indicate that a displacement of approximately 258.95 μm with a response time of about 156.51 ms can be achieved by the V-shaped electrothermal actuator when the applied voltage is 1.2 V. In a single cycle, a total displacement of 340 μm is obtained by the co-actuation device in around 1.28 s.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16040487","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a bidirectional micro-device based on multi-electrothermal co-actuation is proposed for a fuze safety system, combining the advantages of the simple structure, small size, low input voltage, large output, and absence of electromagnetic interference in electrothermal actuators. Based on the working principle of the multi-electrothermal co-actuation device and the mathematical model of the single V-shaped electrothermal actuator established in this paper, the temperature distribution of the V-shaped electrothermal actuator is simulated. In addition, the dynamic response and the effect of geometric factors on the output performance of the multi-electrothermal co-actuation device are analyzed in detail. Furthermore, driving characteristics tests of the electrothermal micro-device are carried out. The experimental findings indicate that a displacement of approximately 258.95 μm with a response time of about 156.51 ms can be achieved by the V-shaped electrothermal actuator when the applied voltage is 1.2 V. In a single cycle, a total displacement of 340 μm is obtained by the co-actuation device in around 1.28 s.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.