The CRISPR-Cas9 knockout DDC SH-SY5Y in vitro model for AADC deficiency provides insight into the pathogenicity of R347Q and L353P variants: a cross-sectional structural and functional analysis.

Cristian Andres Carmona-Carmona, Giovanni Bisello, Rossella Franchini, Gianluigi Lunardi, Roberta Galavotti, Massimiliano Perduca, Rui P Ribeiro, Benny Danilo Belviso, Alejandro Giorgetti, Rocco Caliandro, Patricia M-J Lievens, Mariarita Bertoldi
{"title":"The CRISPR-Cas9 knockout DDC SH-SY5Y in vitro model for AADC deficiency provides insight into the pathogenicity of R347Q and L353P variants: a cross-sectional structural and functional analysis.","authors":"Cristian Andres Carmona-Carmona, Giovanni Bisello, Rossella Franchini, Gianluigi Lunardi, Roberta Galavotti, Massimiliano Perduca, Rui P Ribeiro, Benny Danilo Belviso, Alejandro Giorgetti, Rocco Caliandro, Patricia M-J Lievens, Mariarita Bertoldi","doi":"10.1111/febs.70120","DOIUrl":null,"url":null,"abstract":"<p><p>Aromatic amino acid decarboxylase (AADC) deficiency is a severe inherited recessive neurotransmitter disorder caused by an impairment in dopamine synthesis due to the lack/modification of AADC, the enzyme converting l-dopa to dopamine. Patients exhibit severe movement disorders and neurodevelopmental delay, with a high risk of premature mortality. Given the lack of a reliable model for the disease, we developed a dopa decarboxylase knockout model using CRISPR/Cas9 technology in the SH-SY5Y neuroblastoma cell line. This model showed a deficiency in AADC protein and activity, with an altered dopamine metabolites profile (low homovanillic acid and high 3-O-methyldopa) and a modified expression of key enzymes, such as dopamine beta-hydroxylase and monoamine oxidases, which are involved in the catecholamine pathway. We then transfected the DDC-KO cells with two AADC catalytic variants, R347Q and L353P, which resulted in loss-of-function and an altered profile of dopamine metabolites. By combining several structural approaches (X-ray crystallography, molecular dynamics, small angle X-ray scattering, dynamic light scattering, and spectroscopy), we determined that both variants alter the flexibility of the structural element to which they belong, whose integrity is essential for catalysis. This change causes a mispositioning of essential residues at the active site, leading, in turn, to an unproductive external aldimine, identifying the molecular basis for the loss-of-function. Overall, the DDC-KO model recapitulates some key features of AADC deficiency, is useful to study the molecular basis of the disease, and represents an ideal system for small molecule screening regarding specific enzyme defects, paving the way for a precision therapeutic approach.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aromatic amino acid decarboxylase (AADC) deficiency is a severe inherited recessive neurotransmitter disorder caused by an impairment in dopamine synthesis due to the lack/modification of AADC, the enzyme converting l-dopa to dopamine. Patients exhibit severe movement disorders and neurodevelopmental delay, with a high risk of premature mortality. Given the lack of a reliable model for the disease, we developed a dopa decarboxylase knockout model using CRISPR/Cas9 technology in the SH-SY5Y neuroblastoma cell line. This model showed a deficiency in AADC protein and activity, with an altered dopamine metabolites profile (low homovanillic acid and high 3-O-methyldopa) and a modified expression of key enzymes, such as dopamine beta-hydroxylase and monoamine oxidases, which are involved in the catecholamine pathway. We then transfected the DDC-KO cells with two AADC catalytic variants, R347Q and L353P, which resulted in loss-of-function and an altered profile of dopamine metabolites. By combining several structural approaches (X-ray crystallography, molecular dynamics, small angle X-ray scattering, dynamic light scattering, and spectroscopy), we determined that both variants alter the flexibility of the structural element to which they belong, whose integrity is essential for catalysis. This change causes a mispositioning of essential residues at the active site, leading, in turn, to an unproductive external aldimine, identifying the molecular basis for the loss-of-function. Overall, the DDC-KO model recapitulates some key features of AADC deficiency, is useful to study the molecular basis of the disease, and represents an ideal system for small molecule screening regarding specific enzyme defects, paving the way for a precision therapeutic approach.

CRISPR-Cas9敲除DDC SH-SY5Y体外AADC缺陷模型提供了对R347Q和L353P变体致病性的深入了解:横断面结构和功能分析。
芳香氨基酸脱羧酶(Aromatic amino acid decarboxylase, AADC)缺乏症是一种严重的遗传性隐性神经递质疾病,由将左旋多巴转化为多巴胺的酶AADC缺乏或修饰导致多巴胺合成障碍引起。患者表现出严重的运动障碍和神经发育迟缓,有很高的过早死亡风险。鉴于缺乏可靠的疾病模型,我们在SH-SY5Y神经母细胞瘤细胞系中使用CRISPR/Cas9技术开发了多巴脱羧酶敲除模型。该模型显示AADC蛋白和活性缺乏,多巴胺代谢物谱(低同型香草酸和高3- o -甲基多巴)改变,关键酶(如多巴胺β -羟化酶和单胺氧化酶)表达改变,这些酶参与儿茶酚胺途径。然后,我们用两种AADC催化变体R347Q和L353P转染DDC-KO细胞,导致功能丧失和多巴胺代谢物的改变。通过结合几种结构方法(x射线晶体学、分子动力学、小角度x射线散射、动态光散射和光谱学),我们确定这两种变体都改变了它们所属的结构元素的灵活性,其完整性对催化至关重要。这种变化导致活性位点必需残基的错误定位,进而导致非生产性外部醛胺,从而确定功能丧失的分子基础。总的来说,DDC-KO模型概括了AADC缺乏症的一些关键特征,有助于研究该疾病的分子基础,并且代表了针对特定酶缺陷进行小分子筛选的理想系统,为精确治疗方法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信