{"title":"Focused Ultrasound Sonications of Tumor Model in Head Phantom under MRI Monitoring: Effect of Skull Obstruction on Focal Heating.","authors":"Anastasia Antoniou, Antreas Chrysanthou, Leonidas Georgiou, Antonis Christofi, Yiannis Roussakis, Cleanthis Ioannides, Kyriakos Spanoudes, Jufeng Zhao, Liyang Yu, Christakis Damianou","doi":"10.4103/jmp.jmp_177_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study presents the outcomes of a series of magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS) sonications performed on an anatomically accurate head phantom with an embedded tumor simulator to evaluate the effectiveness of partial and complete tumor ablation with obstruction from thin polymer skull mimics.</p><p><strong>Materials and methods: </strong>The tumor simulator was subjected to single and grid sonications using a single-element concave transducer integrated with an MRI-compatible focused ultrasound (FUS) robotic system. All experiments were carried out in a high-field MRI scanner utilizing proton resonance frequency thermometry and T2-weighted (T2-W) turbo spin echo (TSE) imaging to evaluate the induced thermal effects. FUS transmission through 1-mm thick three-dimensional-printed polymer skull mimics was compared to unobstructed sonication through a circular aperture in the skull model.</p><p><strong>Results: </strong>T2-W TSE imaging demonstrated sharp contrast between the tumor and hyperintense FUS lesions. Complete tumor coverage was achieved through robotic-assisted grid ablation without a skull mimic, as well as with a 1-mm resin skull mimic intervening in the beam. With the lowest attenuation among tested polymers, the resin skull resulted in approximately a 20% reduction in focal temperature change compared to unobstructed sonication, yet still facilitated sharp beam focusing, raising the tumor temperature to ablative levels.</p><p><strong>Conclusions: </strong>The study provides preliminary evidence for the potential application of a thin biocompatible implant to temporarily replace a skull portion facilitating MRgFUS ablation of inoperable tumors using a single-element transducer. The tumor-embedded head phantom was proven effective for testing MRgFUS oncological protocols and equipment.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"50 1","pages":"38-45"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_177_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study presents the outcomes of a series of magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS) sonications performed on an anatomically accurate head phantom with an embedded tumor simulator to evaluate the effectiveness of partial and complete tumor ablation with obstruction from thin polymer skull mimics.
Materials and methods: The tumor simulator was subjected to single and grid sonications using a single-element concave transducer integrated with an MRI-compatible focused ultrasound (FUS) robotic system. All experiments were carried out in a high-field MRI scanner utilizing proton resonance frequency thermometry and T2-weighted (T2-W) turbo spin echo (TSE) imaging to evaluate the induced thermal effects. FUS transmission through 1-mm thick three-dimensional-printed polymer skull mimics was compared to unobstructed sonication through a circular aperture in the skull model.
Results: T2-W TSE imaging demonstrated sharp contrast between the tumor and hyperintense FUS lesions. Complete tumor coverage was achieved through robotic-assisted grid ablation without a skull mimic, as well as with a 1-mm resin skull mimic intervening in the beam. With the lowest attenuation among tested polymers, the resin skull resulted in approximately a 20% reduction in focal temperature change compared to unobstructed sonication, yet still facilitated sharp beam focusing, raising the tumor temperature to ablative levels.
Conclusions: The study provides preliminary evidence for the potential application of a thin biocompatible implant to temporarily replace a skull portion facilitating MRgFUS ablation of inoperable tumors using a single-element transducer. The tumor-embedded head phantom was proven effective for testing MRgFUS oncological protocols and equipment.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.