Long-read technologies identify a hidden LINE-1/ERV1 insertion in IQCB1 as causative variant for Senior-Løken syndrome.

IF 4.7 2区 医学 Q1 GENETICS & HEREDITY
Suzanne E de Bruijn, L Ingeborgh van den Born, Ronny Derks, Lonneke Haer-Wigman, Luke O'Gorman, Frans P M Cremers, Ronald van Beek, Alexander Hoischen, Susanne Roosing, Kornelia Neveling
{"title":"Long-read technologies identify a hidden LINE-1/ERV1 insertion in IQCB1 as causative variant for Senior-Løken syndrome.","authors":"Suzanne E de Bruijn, L Ingeborgh van den Born, Ronny Derks, Lonneke Haer-Wigman, Luke O'Gorman, Frans P M Cremers, Ronald van Beek, Alexander Hoischen, Susanne Roosing, Kornelia Neveling","doi":"10.1038/s41525-025-00490-8","DOIUrl":null,"url":null,"abstract":"<p><p>Senior-Løken syndrome is a rare ciliopathy characterized by retinal dystrophy and nephronophthisis. This autosomal recessive inherited disease is caused by pathogenic variants in several genes, including IQCB1. We present a Senior-Løken case that remained genetically unexplained after routine genetic testing, including exome and genome sequencing. To identify the genetic cause for this individual, a combination of innovative long-read technologies was employed. Using optical genome mapping, an intronic 6.2-kb insertion in IQCB1 was revealed. Validation by long-read genome sequencing determined that this insertion consisted of a LINE-1/ERV1-mobile element. The variant was found in trans with a pathogenic IQCB1 2-bp deletion previously identified by exome sequencing. To investigate the consequences of the insertion, targeted long-read RNA-sequencing was performed, revealing a complex splice defect causing the introduction of a premature stop codon. This finding suggests that mobile element insertions represent a yet underestimated variant type that is difficult to detect using short-read sequencing.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"10 1","pages":"33"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015587/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-025-00490-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Senior-Løken syndrome is a rare ciliopathy characterized by retinal dystrophy and nephronophthisis. This autosomal recessive inherited disease is caused by pathogenic variants in several genes, including IQCB1. We present a Senior-Løken case that remained genetically unexplained after routine genetic testing, including exome and genome sequencing. To identify the genetic cause for this individual, a combination of innovative long-read technologies was employed. Using optical genome mapping, an intronic 6.2-kb insertion in IQCB1 was revealed. Validation by long-read genome sequencing determined that this insertion consisted of a LINE-1/ERV1-mobile element. The variant was found in trans with a pathogenic IQCB1 2-bp deletion previously identified by exome sequencing. To investigate the consequences of the insertion, targeted long-read RNA-sequencing was performed, revealing a complex splice defect causing the introduction of a premature stop codon. This finding suggests that mobile element insertions represent a yet underestimated variant type that is difficult to detect using short-read sequencing.

长读技术鉴定出IQCB1中隐藏的LINE-1/ERV1插入是Senior-Løken综合征的致病变异。
老年lø ken综合征是一种罕见的纤毛病,以视网膜营养不良和肾病为特征。这种常染色体隐性遗传疾病是由包括IQCB1在内的几个基因的致病变异引起的。我们报告了一例在常规基因检测(包括外显子组和基因组测序)后仍然无法解释的Senior-Løken病例。为了确定这一个体的遗传原因,采用了一系列创新的长读技术。利用光学基因组定位技术,在IQCB1中发现了一个6.2 kb的内含子插入。经长读基因组测序验证,该插入由LINE-1/ erv1移动元件组成。该变异在反式中发现,具有先前通过外显子组测序鉴定的致病性IQCB1 2-bp缺失。为了研究插入的后果,进行了靶向长读rna测序,揭示了导致过早终止密码子引入的复杂剪接缺陷。这一发现表明,移动元件插入代表了一种尚未被低估的变体类型,难以使用短读测序检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Genomic Medicine
NPJ Genomic Medicine Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍: npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine. The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信