{"title":"Towards Optimizing Neural Network-Based Quantification for NMR Metabolomics.","authors":"Hayden Johnson, Aaryani Tipirneni-Sajja","doi":"10.3390/metabo15040249","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Quantification of metabolites from nuclear magnetic resonance (NMR) spectra in an accurate, high-throughput manner requires effective data processing tools. Neural networks are relatively underexplored in quantitative NMR metabolomics despite impressive speed and throughput compared to more conventional peak-fitting metabolomics software. <b>Methods:</b> This work investigates practices for dataset and model development in the task of metabolite quantification directly from simulated NMR spectra for three neural network models: the multi-layered perceptron, the convolutional neural network, and the transformer. Model architectures, training parameters, and training datasets are optimized before comparing each model on simulated 400-MHz <sup>1</sup>H-NMR spectra of complex mixtures with 8, 44, or 86 metabolites to quantify in spectra ranging from simple to highly complex and overlapping peaks. The optimized models were further validated on spectra at 100- and 800-MHz. <b>Results:</b> The transformer was the most effective network for NMR metabolite quantification, especially as the number of metabolites per spectra increased or target concentrations were low or had a large dynamic range. Further, the transformer was able to accurately quantify metabolites in simulated spectra from 100-MHz up to 800-MHz. <b>Conclusions:</b> The methods developed in this work reveal that transformers have the potential to accurately perform fully automated metabolite quantification in real-time and, with further development with experimental data, could be the basis for automated quantitative NMR metabolomics software.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15040249","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Quantification of metabolites from nuclear magnetic resonance (NMR) spectra in an accurate, high-throughput manner requires effective data processing tools. Neural networks are relatively underexplored in quantitative NMR metabolomics despite impressive speed and throughput compared to more conventional peak-fitting metabolomics software. Methods: This work investigates practices for dataset and model development in the task of metabolite quantification directly from simulated NMR spectra for three neural network models: the multi-layered perceptron, the convolutional neural network, and the transformer. Model architectures, training parameters, and training datasets are optimized before comparing each model on simulated 400-MHz 1H-NMR spectra of complex mixtures with 8, 44, or 86 metabolites to quantify in spectra ranging from simple to highly complex and overlapping peaks. The optimized models were further validated on spectra at 100- and 800-MHz. Results: The transformer was the most effective network for NMR metabolite quantification, especially as the number of metabolites per spectra increased or target concentrations were low or had a large dynamic range. Further, the transformer was able to accurately quantify metabolites in simulated spectra from 100-MHz up to 800-MHz. Conclusions: The methods developed in this work reveal that transformers have the potential to accurately perform fully automated metabolite quantification in real-time and, with further development with experimental data, could be the basis for automated quantitative NMR metabolomics software.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.