Yupeng Fan, Dongyu Wang, Joy X Yang, Daliang Ning, Zhili He, Ping Zhang, Andrea M Rocha, Naijia Xiao, Jonathan P Michael, Katie F Walker, Dominique C Joyner, Chongle Pan, Michael W W Adams, Matthew W Fields, Eric J Alm, David A Stahl, Terry C Hazen, Paul D Adams, Adam P Arkin, Jizhong Zhou
{"title":"Modest functional diversity decline and pronounced composition shifts of microbial communities in a mixed waste-contaminated aquifer.","authors":"Yupeng Fan, Dongyu Wang, Joy X Yang, Daliang Ning, Zhili He, Ping Zhang, Andrea M Rocha, Naijia Xiao, Jonathan P Michael, Katie F Walker, Dominique C Joyner, Chongle Pan, Michael W W Adams, Matthew W Fields, Eric J Alm, David A Stahl, Terry C Hazen, Paul D Adams, Adam P Arkin, Jizhong Zhou","doi":"10.1186/s40168-025-02105-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microbial taxonomic diversity declines with increased environmental stress. Yet, few studies have explored whether phylogenetic and functional diversities track taxonomic diversity along the stress gradient. Here, we investigated microbial communities within an aquifer in Oak Ridge, Tennessee, USA, which is characterized by a broad spectrum of stressors, including extremely high levels of nitrate, heavy metals like cadmium and chromium, radionuclides such as uranium, and extremely low pH (< 3).</p><p><strong>Results: </strong>Both taxonomic and phylogenetic α-diversities were reduced in the most impacted wells, while the decline in functional α-diversity was modest and statistically insignificant, indicating a more robust buffering capacity to environmental stress. Differences in functional gene composition (i.e., functional β-diversity) were pronounced in highly contaminated wells, while convergent functional gene composition was observed in uncontaminated wells. The relative abundances of most carbon degradation genes were decreased in contaminated wells, but genes associated with denitrification, adenylylsulfate reduction, and sulfite reduction were increased. Compared to taxonomic and phylogenetic compositions, environmental variables played a more significant role in shaping functional gene composition, suggesting that niche selection could be more closely related to microbial functionality than taxonomy.</p><p><strong>Conclusions: </strong>Overall, we demonstrated that despite a reduced taxonomic α-diversity, microbial communities under stress maintained functionality underpinned by environmental selection. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"106"},"PeriodicalIF":13.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02105-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Microbial taxonomic diversity declines with increased environmental stress. Yet, few studies have explored whether phylogenetic and functional diversities track taxonomic diversity along the stress gradient. Here, we investigated microbial communities within an aquifer in Oak Ridge, Tennessee, USA, which is characterized by a broad spectrum of stressors, including extremely high levels of nitrate, heavy metals like cadmium and chromium, radionuclides such as uranium, and extremely low pH (< 3).
Results: Both taxonomic and phylogenetic α-diversities were reduced in the most impacted wells, while the decline in functional α-diversity was modest and statistically insignificant, indicating a more robust buffering capacity to environmental stress. Differences in functional gene composition (i.e., functional β-diversity) were pronounced in highly contaminated wells, while convergent functional gene composition was observed in uncontaminated wells. The relative abundances of most carbon degradation genes were decreased in contaminated wells, but genes associated with denitrification, adenylylsulfate reduction, and sulfite reduction were increased. Compared to taxonomic and phylogenetic compositions, environmental variables played a more significant role in shaping functional gene composition, suggesting that niche selection could be more closely related to microbial functionality than taxonomy.
Conclusions: Overall, we demonstrated that despite a reduced taxonomic α-diversity, microbial communities under stress maintained functionality underpinned by environmental selection. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.