Differential performance of strategies for single-cell whole-genome amplification.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Nuria Estévez-Gómez, Tamara Prieto, Laura Tomás, Pilar Alvariño, Amy Guillaumet-Adkins, Holger Heyn, Sonia Prado-López, David Posada
{"title":"Differential performance of strategies for single-cell whole-genome amplification.","authors":"Nuria Estévez-Gómez, Tamara Prieto, Laura Tomás, Pilar Alvariño, Amy Guillaumet-Adkins, Holger Heyn, Sonia Prado-López, David Posada","doi":"10.1016/j.crmeth.2025.101025","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell genomics enables studying tissues and organisms at the highest resolution. However, since a cell contains a small amount of DNA, single-cell DNA sequencing (scDNA-seq) typically requires single-cell whole-genome amplification (scWGA). Unfortunately, scWGA methods introduce technical biases that complicate the interpretation of scDNA-seq data. We compared six scWGA methods, three MDA (multiple displacement amplification; GenomiPhi, REPLI-g, and TruePrime) and three non-MDA (Ampli1, MALBAC, and PicoPLEX), on 206 tumoral and 24 healthy human cells. scWGA methods performed differently depending on the parameter of interest. REPLI-g minimized regional amplification bias, while non-MDA methods showed a more uniform and reproducible amplification. Ampli1 exhibited the lowest allelic imbalance and dropout, the most accurate insertion or deletion (indel) and copy-number detection, and a low polymerase error rate. However, REPLI-g yielded higher DNA quantities, longer amplicons, and greater genome coverage. We offer a comprehensive guide for selecting a scWGA approach, outlining trade-offs that influence the interpretation of scDNA-seq data.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"5 4","pages":"101025"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell genomics enables studying tissues and organisms at the highest resolution. However, since a cell contains a small amount of DNA, single-cell DNA sequencing (scDNA-seq) typically requires single-cell whole-genome amplification (scWGA). Unfortunately, scWGA methods introduce technical biases that complicate the interpretation of scDNA-seq data. We compared six scWGA methods, three MDA (multiple displacement amplification; GenomiPhi, REPLI-g, and TruePrime) and three non-MDA (Ampli1, MALBAC, and PicoPLEX), on 206 tumoral and 24 healthy human cells. scWGA methods performed differently depending on the parameter of interest. REPLI-g minimized regional amplification bias, while non-MDA methods showed a more uniform and reproducible amplification. Ampli1 exhibited the lowest allelic imbalance and dropout, the most accurate insertion or deletion (indel) and copy-number detection, and a low polymerase error rate. However, REPLI-g yielded higher DNA quantities, longer amplicons, and greater genome coverage. We offer a comprehensive guide for selecting a scWGA approach, outlining trade-offs that influence the interpretation of scDNA-seq data.

单细胞全基因组扩增策略的差异表现。
单细胞基因组学能够以最高的分辨率研究组织和生物体。然而,由于细胞含有少量的DNA,单细胞DNA测序(scDNA-seq)通常需要单细胞全基因组扩增(scWGA)。不幸的是,scWGA方法引入了技术偏差,使scDNA-seq数据的解释复杂化。我们比较了6种scWGA方法,3种MDA(多重位移扩增;GenomiPhi、REPLI-g和truepprime)和三种非mda (Ampli1、MALBAC和PicoPLEX)对206个肿瘤细胞和24个健康人细胞进行了检测。scWGA方法根据感兴趣的参数执行不同的操作。REPLI-g最小化了区域扩增偏倚,而非mda方法显示出更均匀和可重复性的扩增。Ampli1表现出最低的等位基因失衡和缺失,最准确的插入或删除(indel)和拷贝数检测,低聚合酶错误率。然而,REPLI-g产生更高的DNA数量,更长的扩增子和更大的基因组覆盖率。我们提供了一个选择scWGA方法的综合指南,概述了影响scDNA-seq数据解释的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信