Categories of important edges in dynamics on graphs.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-04-23 eCollection Date: 2025-04-01 DOI:10.1098/rsos.241086
Dzmitry Rumiantsau, Johannes Falk, Piotr Nyczka, Marc-Thorsten Hütt
{"title":"Categories of important edges in dynamics on graphs.","authors":"Dzmitry Rumiantsau, Johannes Falk, Piotr Nyczka, Marc-Thorsten Hütt","doi":"10.1098/rsos.241086","DOIUrl":null,"url":null,"abstract":"<p><p>How important is a single edge of a graph for a specific dynamical task? This question is of practical relevance to many research fields and is pivotal to understanding the structure-function relationships in complex networks more deeply. Here, we design an analysis strategy to answer it and explore the connection of such importance to network topology. Our approach for evaluating dynamical edge importance is based on the differences in time courses between dynamics on the original graph <math><mi>G</mi></math> and on the graph <math><msup><mi>G</mi> <mo>-</mo></msup> </math> missing an edge. To demonstrate the method's versatility, we apply it to two drastically different classes of dynamics-a minimal model of excitable dynamics, and totalistic cellular automata on graphs as representatives of pattern formation. Our results suggest that the dynamical usage of a graph relies on markedly different topological attributes for these two classes of processes. Finally, we study dynamical edge importance in the macaque cortical area network, to illustrate possible real-world applications. We find that dynamical importance of edges differ between the network and its switch-randomized counterparts, and these differences can be functionally interpreted. Moreover, they are qualitatively distinct for long-time courses and short transients, highlighting different parts of the network's intended function.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 4","pages":"241086"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241086","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

How important is a single edge of a graph for a specific dynamical task? This question is of practical relevance to many research fields and is pivotal to understanding the structure-function relationships in complex networks more deeply. Here, we design an analysis strategy to answer it and explore the connection of such importance to network topology. Our approach for evaluating dynamical edge importance is based on the differences in time courses between dynamics on the original graph G and on the graph G - missing an edge. To demonstrate the method's versatility, we apply it to two drastically different classes of dynamics-a minimal model of excitable dynamics, and totalistic cellular automata on graphs as representatives of pattern formation. Our results suggest that the dynamical usage of a graph relies on markedly different topological attributes for these two classes of processes. Finally, we study dynamical edge importance in the macaque cortical area network, to illustrate possible real-world applications. We find that dynamical importance of edges differ between the network and its switch-randomized counterparts, and these differences can be functionally interpreted. Moreover, they are qualitatively distinct for long-time courses and short transients, highlighting different parts of the network's intended function.

图上动力学中重要边的分类。
对于特定的动态任务,图的单个边有多重要?这个问题与许多研究领域具有实际意义,对于更深入地理解复杂网络中的结构-功能关系至关重要。在这里,我们设计了一个分析策略来回答这个问题,并探讨了这种重要性与网络拓扑的联系。我们评估动态边缘重要性的方法是基于原始图G和图G上的动态时间过程的差异-缺少一条边。为了证明该方法的通用性,我们将其应用于两种截然不同的动态类型——可激发动力学的最小模型,以及作为模式形成代表的图上的总体元胞自动机。我们的结果表明,图的动态使用依赖于这两类过程的显著不同的拓扑属性。最后,我们研究了动态边缘在猕猴皮质区域网络中的重要性,以说明可能的实际应用。我们发现,在网络和交换随机网络中,边的动态重要性是不同的,这些差异可以用函数来解释。此外,对于长时间的课程和短时间的课程,它们在质量上是不同的,突出了网络预期功能的不同部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信