Performance of AI Approaches for COVID-19 Diagnosis Using Chest CT Scans: The Impact of Architecture and Dataset.

IF 1.3 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Astha Jaiswal, Philipp Fervers, Fanyang Meng, Huimao Zhang, Dorottya Móré, Athanasios Giannakis, Jasmin Wailzer, Andreas Michael Bucher, David Maintz, Jonathan Kottlors, Rahil Shahzad, Thorsten Persigehl
{"title":"Performance of AI Approaches for COVID-19 Diagnosis Using Chest CT Scans: The Impact of Architecture and Dataset.","authors":"Astha Jaiswal, Philipp Fervers, Fanyang Meng, Huimao Zhang, Dorottya Móré, Athanasios Giannakis, Jasmin Wailzer, Andreas Michael Bucher, David Maintz, Jonathan Kottlors, Rahil Shahzad, Thorsten Persigehl","doi":"10.1055/a-2577-3928","DOIUrl":null,"url":null,"abstract":"<p><p>AI is emerging as a promising tool for diagnosing COVID-19 based on chest CT scans. The aim of this study was the comparison of AI models for COVID-19 diagnosis. Therefore, we: (1) trained three distinct AI models for classifying COVID-19 and non-COVID-19 pneumonia (nCP) using a large, clinically relevant CT dataset, (2) evaluated the models' performance using an independent test set, and (3) compared the models both algorithmically and experimentally.In this multicenter multi-vendor study, we collected n=1591 chest CT scans of COVID-19 (n=762) and nCP (n=829) patients from China and Germany. In Germany, the data was collected from three RACOON sites. We trained and validated three COVID-19 AI models with different architectures: COVNet based on 2D-CNN, DeCoVnet based on 3D-CNN, and AD3D-MIL based on 3D-CNN with attention module. 991 CT scans were used for training the AI models using 5-fold cross-validation. 600 CT scans from 6 different centers were used for independent testing. The models' performance was evaluated using accuracy (Acc), sensitivity (Se), and specificity (Sp).The average validation accuracy of the COVNet, DeCoVnet, and AD3D-MIL models over the 5 folds was 80.9%, 82.0%, and 84.3%, respectively. On the independent test set with n=600 CT scans, COVNet yielded Acc=76.6%, Se=67.8%, Sp=85.7%; DeCoVnet provided Acc=75.1%, Se=61.2%, Sp=89.7%; and AD3D-MIL achieved Acc=73.9%, Se=57.7%, Sp=90.8%.The classification performance of the evaluated AI models is highly dependent on the training data rather than the architecture itself. Our results demonstrate a high specificity and moderate sensitivity. The AI classification models should not be used unsupervised but could potentially assist radiologists in COVID-19 and nCP identification. · This study compares AI approaches for diagnosing COVID-19 in chest CT scans, which is essential for further optimizing the delivery of healthcare and for pandemic preparedness.. · Our experiments using a multicenter, multi-vendor, diverse dataset show that the training data is the key factor in determining the diagnostic performance.. · The AI models should not be used unsupervised but as a tool to assist radiologists.. · Jaiswal A, Fervers P, Meng F et al. Performance of AI Approaches for COVID-19 Diagnosis Using Chest CT Scans: The Impact of Architecture and Dataset. Rofo 2025; DOI 10.1055/a-2577-3928.</p>","PeriodicalId":21490,"journal":{"name":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2577-3928","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

AI is emerging as a promising tool for diagnosing COVID-19 based on chest CT scans. The aim of this study was the comparison of AI models for COVID-19 diagnosis. Therefore, we: (1) trained three distinct AI models for classifying COVID-19 and non-COVID-19 pneumonia (nCP) using a large, clinically relevant CT dataset, (2) evaluated the models' performance using an independent test set, and (3) compared the models both algorithmically and experimentally.In this multicenter multi-vendor study, we collected n=1591 chest CT scans of COVID-19 (n=762) and nCP (n=829) patients from China and Germany. In Germany, the data was collected from three RACOON sites. We trained and validated three COVID-19 AI models with different architectures: COVNet based on 2D-CNN, DeCoVnet based on 3D-CNN, and AD3D-MIL based on 3D-CNN with attention module. 991 CT scans were used for training the AI models using 5-fold cross-validation. 600 CT scans from 6 different centers were used for independent testing. The models' performance was evaluated using accuracy (Acc), sensitivity (Se), and specificity (Sp).The average validation accuracy of the COVNet, DeCoVnet, and AD3D-MIL models over the 5 folds was 80.9%, 82.0%, and 84.3%, respectively. On the independent test set with n=600 CT scans, COVNet yielded Acc=76.6%, Se=67.8%, Sp=85.7%; DeCoVnet provided Acc=75.1%, Se=61.2%, Sp=89.7%; and AD3D-MIL achieved Acc=73.9%, Se=57.7%, Sp=90.8%.The classification performance of the evaluated AI models is highly dependent on the training data rather than the architecture itself. Our results demonstrate a high specificity and moderate sensitivity. The AI classification models should not be used unsupervised but could potentially assist radiologists in COVID-19 and nCP identification. · This study compares AI approaches for diagnosing COVID-19 in chest CT scans, which is essential for further optimizing the delivery of healthcare and for pandemic preparedness.. · Our experiments using a multicenter, multi-vendor, diverse dataset show that the training data is the key factor in determining the diagnostic performance.. · The AI models should not be used unsupervised but as a tool to assist radiologists.. · Jaiswal A, Fervers P, Meng F et al. Performance of AI Approaches for COVID-19 Diagnosis Using Chest CT Scans: The Impact of Architecture and Dataset. Rofo 2025; DOI 10.1055/a-2577-3928.

使用胸部CT扫描诊断COVID-19的AI方法的性能:架构和数据集的影响。
人工智能正在成为以胸部CT扫描为基础的新冠肺炎诊断工具。本研究的目的是比较新冠肺炎诊断的人工智能模型。因此,我们:(1)使用大型临床相关CT数据集训练了三种不同的AI模型,用于对COVID-19和非COVID-19肺炎(nCP)进行分类;(2)使用独立测试集评估模型的性能;(3)对模型进行算法和实验比较。在这项多中心、多供应商的研究中,我们收集了来自中国和德国的n=1591例COVID-19 (n=762)和nCP (n=829)患者的胸部CT扫描。在德国,数据是从浣熊的三个地点收集的。我们训练并验证了三种不同架构的COVID-19人工智能模型:基于2D-CNN的COVNet、基于3D-CNN的DeCoVnet和基于3D-CNN的AD3D-MIL。使用991次CT扫描对人工智能模型进行5倍交叉验证。来自6个不同中心的600个CT扫描被用于独立测试。通过准确性(Acc)、敏感性(Se)和特异性(Sp)来评估模型的性能。COVNet、DeCoVnet和AD3D-MIL模型在5倍范围内的平均验证准确率分别为80.9%、82.0%和84.3%。在n=600 CT扫描的独立测试集上,COVNet产生的Acc=76.6%, Se=67.8%, Sp=85.7%;DeCoVnet提供Acc=75.1%, Se=61.2%, Sp=89.7%;AD3D-MIL实现Acc=73.9%, Se=57.7%, Sp=90.8%。被评估的人工智能模型的分类性能高度依赖于训练数据,而不是架构本身。我们的结果显示高特异性和中等敏感性。人工智能分类模型不应在无人监督的情况下使用,但可能有助于放射科医生识别COVID-19和新型冠状病毒。·本研究比较了在胸部CT扫描中诊断COVID-19的人工智能方法,这对于进一步优化医疗服务和大流行防范至关重要。·我们使用多中心、多供应商、多样化数据集的实验表明,训练数据是决定诊断性能的关键因素。·人工智能模型不应在无人监督的情况下使用,而应作为辅助放射科医生的工具。·Jaiswal A, Fervers P, bbb90 F等。使用胸部CT扫描诊断COVID-19的AI方法的性能:架构和数据集的影响。Rofo 2025;DOI 10.1055 / - 2577 - 3928。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
5.60%
发文量
340
期刊介绍: Die RöFo veröffentlicht Originalarbeiten, Übersichtsartikel und Fallberichte aus dem Bereich der Radiologie und den weiteren bildgebenden Verfahren in der Medizin. Es dürfen nur Arbeiten eingereicht werden, die noch nicht veröffentlicht sind und die auch nicht gleichzeitig einer anderen Zeitschrift zur Veröffentlichung angeboten wurden. Alle eingereichten Beiträge unterliegen einer sorgfältigen fachlichen Begutachtung. Gegründet 1896 – nur knapp 1 Jahr nach der Entdeckung der Röntgenstrahlen durch C.W. Röntgen – blickt die RöFo auf über 100 Jahre Erfahrung als wichtigstes Publikationsmedium in der deutschsprachigen Radiologie zurück. Sie ist damit die älteste radiologische Fachzeitschrift und schafft es erfolgreich, lange Kontinuität mit dem Anspruch an wissenschaftliches Publizieren auf internationalem Niveau zu verbinden. Durch ihren zentralen Platz im Verlagsprogramm stellte die RöFo die Basis für das heute umfassende und erfolgreiche Radiologie-Medienangebot im Georg Thieme Verlag. Besonders eng verbunden ist die RöFo mit der Geschichte der Röntgengesellschaften in Deutschland und Österreich. Sie ist offizielles Organ von DRG und ÖRG und die Mitglieder der Fachgesellschaften erhalten die Zeitschrift im Rahmen ihrer Mitgliedschaft. Mit ihrem wissenschaftlichen Kernteil und dem eigenen Mitteilungsteil der Fachgesellschaften bietet die RöFo Monat für Monat ein Forum für den Austausch von Inhalten und Botschaften der radiologischen Community im deutschsprachigen Raum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信