Astha Jaiswal, Philipp Fervers, Fanyang Meng, Huimao Zhang, Dorottya Móré, Athanasios Giannakis, Jasmin Wailzer, Andreas Michael Bucher, David Maintz, Jonathan Kottlors, Rahil Shahzad, Thorsten Persigehl
{"title":"Performance of AI Approaches for COVID-19 Diagnosis Using Chest CT Scans: The Impact of Architecture and Dataset.","authors":"Astha Jaiswal, Philipp Fervers, Fanyang Meng, Huimao Zhang, Dorottya Móré, Athanasios Giannakis, Jasmin Wailzer, Andreas Michael Bucher, David Maintz, Jonathan Kottlors, Rahil Shahzad, Thorsten Persigehl","doi":"10.1055/a-2577-3928","DOIUrl":null,"url":null,"abstract":"<p><p>AI is emerging as a promising tool for diagnosing COVID-19 based on chest CT scans. The aim of this study was the comparison of AI models for COVID-19 diagnosis. Therefore, we: (1) trained three distinct AI models for classifying COVID-19 and non-COVID-19 pneumonia (nCP) using a large, clinically relevant CT dataset, (2) evaluated the models' performance using an independent test set, and (3) compared the models both algorithmically and experimentally.In this multicenter multi-vendor study, we collected n=1591 chest CT scans of COVID-19 (n=762) and nCP (n=829) patients from China and Germany. In Germany, the data was collected from three RACOON sites. We trained and validated three COVID-19 AI models with different architectures: COVNet based on 2D-CNN, DeCoVnet based on 3D-CNN, and AD3D-MIL based on 3D-CNN with attention module. 991 CT scans were used for training the AI models using 5-fold cross-validation. 600 CT scans from 6 different centers were used for independent testing. The models' performance was evaluated using accuracy (Acc), sensitivity (Se), and specificity (Sp).The average validation accuracy of the COVNet, DeCoVnet, and AD3D-MIL models over the 5 folds was 80.9%, 82.0%, and 84.3%, respectively. On the independent test set with n=600 CT scans, COVNet yielded Acc=76.6%, Se=67.8%, Sp=85.7%; DeCoVnet provided Acc=75.1%, Se=61.2%, Sp=89.7%; and AD3D-MIL achieved Acc=73.9%, Se=57.7%, Sp=90.8%.The classification performance of the evaluated AI models is highly dependent on the training data rather than the architecture itself. Our results demonstrate a high specificity and moderate sensitivity. The AI classification models should not be used unsupervised but could potentially assist radiologists in COVID-19 and nCP identification. · This study compares AI approaches for diagnosing COVID-19 in chest CT scans, which is essential for further optimizing the delivery of healthcare and for pandemic preparedness.. · Our experiments using a multicenter, multi-vendor, diverse dataset show that the training data is the key factor in determining the diagnostic performance.. · The AI models should not be used unsupervised but as a tool to assist radiologists.. · Jaiswal A, Fervers P, Meng F et al. Performance of AI Approaches for COVID-19 Diagnosis Using Chest CT Scans: The Impact of Architecture and Dataset. Rofo 2025; DOI 10.1055/a-2577-3928.</p>","PeriodicalId":21490,"journal":{"name":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2577-3928","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
AI is emerging as a promising tool for diagnosing COVID-19 based on chest CT scans. The aim of this study was the comparison of AI models for COVID-19 diagnosis. Therefore, we: (1) trained three distinct AI models for classifying COVID-19 and non-COVID-19 pneumonia (nCP) using a large, clinically relevant CT dataset, (2) evaluated the models' performance using an independent test set, and (3) compared the models both algorithmically and experimentally.In this multicenter multi-vendor study, we collected n=1591 chest CT scans of COVID-19 (n=762) and nCP (n=829) patients from China and Germany. In Germany, the data was collected from three RACOON sites. We trained and validated three COVID-19 AI models with different architectures: COVNet based on 2D-CNN, DeCoVnet based on 3D-CNN, and AD3D-MIL based on 3D-CNN with attention module. 991 CT scans were used for training the AI models using 5-fold cross-validation. 600 CT scans from 6 different centers were used for independent testing. The models' performance was evaluated using accuracy (Acc), sensitivity (Se), and specificity (Sp).The average validation accuracy of the COVNet, DeCoVnet, and AD3D-MIL models over the 5 folds was 80.9%, 82.0%, and 84.3%, respectively. On the independent test set with n=600 CT scans, COVNet yielded Acc=76.6%, Se=67.8%, Sp=85.7%; DeCoVnet provided Acc=75.1%, Se=61.2%, Sp=89.7%; and AD3D-MIL achieved Acc=73.9%, Se=57.7%, Sp=90.8%.The classification performance of the evaluated AI models is highly dependent on the training data rather than the architecture itself. Our results demonstrate a high specificity and moderate sensitivity. The AI classification models should not be used unsupervised but could potentially assist radiologists in COVID-19 and nCP identification. · This study compares AI approaches for diagnosing COVID-19 in chest CT scans, which is essential for further optimizing the delivery of healthcare and for pandemic preparedness.. · Our experiments using a multicenter, multi-vendor, diverse dataset show that the training data is the key factor in determining the diagnostic performance.. · The AI models should not be used unsupervised but as a tool to assist radiologists.. · Jaiswal A, Fervers P, Meng F et al. Performance of AI Approaches for COVID-19 Diagnosis Using Chest CT Scans: The Impact of Architecture and Dataset. Rofo 2025; DOI 10.1055/a-2577-3928.
期刊介绍:
Die RöFo veröffentlicht Originalarbeiten, Übersichtsartikel und Fallberichte aus dem Bereich der Radiologie und den weiteren bildgebenden Verfahren in der Medizin. Es dürfen nur Arbeiten eingereicht werden, die noch nicht veröffentlicht sind und die auch nicht gleichzeitig einer anderen Zeitschrift zur Veröffentlichung angeboten wurden. Alle eingereichten Beiträge unterliegen einer sorgfältigen fachlichen Begutachtung.
Gegründet 1896 – nur knapp 1 Jahr nach der Entdeckung der Röntgenstrahlen durch C.W. Röntgen – blickt die RöFo auf über 100 Jahre Erfahrung als wichtigstes Publikationsmedium in der deutschsprachigen Radiologie zurück. Sie ist damit die älteste radiologische Fachzeitschrift und schafft es erfolgreich, lange Kontinuität mit dem Anspruch an wissenschaftliches Publizieren auf internationalem Niveau zu verbinden. Durch ihren zentralen Platz im Verlagsprogramm stellte die RöFo die Basis für das heute umfassende und erfolgreiche Radiologie-Medienangebot im Georg Thieme Verlag.
Besonders eng verbunden ist die RöFo mit der Geschichte der Röntgengesellschaften in Deutschland und Österreich. Sie ist offizielles Organ von DRG und ÖRG und die Mitglieder der Fachgesellschaften erhalten die Zeitschrift im Rahmen ihrer Mitgliedschaft. Mit ihrem wissenschaftlichen Kernteil und dem eigenen Mitteilungsteil der Fachgesellschaften bietet die RöFo Monat für Monat ein Forum für den Austausch von Inhalten und Botschaften der radiologischen Community im deutschsprachigen Raum.