Lanthanide-specific doping in vacancy-engineered piezocatalysts induces lysosomal destruction and tumor cell pyroptosis.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaoyan Li, Ying Wang, Xinyue Cao, Xinran Song, Liang Chen, Meiqi Chang, Yu Chen, Bingcang Huang
{"title":"Lanthanide-specific doping in vacancy-engineered piezocatalysts induces lysosomal destruction and tumor cell pyroptosis.","authors":"Xiaoyan Li, Ying Wang, Xinyue Cao, Xinran Song, Liang Chen, Meiqi Chang, Yu Chen, Bingcang Huang","doi":"10.1186/s12951-025-03411-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Reactive oxygen species (ROS)-mediated pyroptosis provides a robust strategy for overcoming apoptosis resistance in breast cancer therapy. Nevertheless, the low efficiency of pyroptosis remains an undeniable challenge. Overcoming this obstacle necessitates the creation of innovative approaches and nanocatalysts to boost ROS generation. Herein, the distinct lanthanum-doped BiFeO<sub>3</sub> (La-BFO) piezoelectric nanozymes are rationally designed and engineered for the specific cell pyroptosis of breast cancer through inducing the amplified production of ROS and releasing La ions.</p><p><strong>Results: </strong>The introduction of La reduces the recombination rate of electron-hole pairs through narrowing the bandgap and creating the oxygen vacancy of BFO, improving the harmful ROS generation efficiency. Importantly, the released La ions robustly disrupt the lysosomal membrane, ultimately inducing cell pyroptosis, in combination with ROS-induced biological effect.</p><p><strong>Conclusion: </strong>In vitro and in vivo antineoplastic results confirm the desirable therapeutic effect on combating tumor. Especially, the iron and bismuth elemental components endow the nanocomposites with dual-mode computed tomography/magnetic resonance imaging ability, guaranteeing the potential therapeutic guidance and monitoring.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"331"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12049022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03411-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Reactive oxygen species (ROS)-mediated pyroptosis provides a robust strategy for overcoming apoptosis resistance in breast cancer therapy. Nevertheless, the low efficiency of pyroptosis remains an undeniable challenge. Overcoming this obstacle necessitates the creation of innovative approaches and nanocatalysts to boost ROS generation. Herein, the distinct lanthanum-doped BiFeO3 (La-BFO) piezoelectric nanozymes are rationally designed and engineered for the specific cell pyroptosis of breast cancer through inducing the amplified production of ROS and releasing La ions.

Results: The introduction of La reduces the recombination rate of electron-hole pairs through narrowing the bandgap and creating the oxygen vacancy of BFO, improving the harmful ROS generation efficiency. Importantly, the released La ions robustly disrupt the lysosomal membrane, ultimately inducing cell pyroptosis, in combination with ROS-induced biological effect.

Conclusion: In vitro and in vivo antineoplastic results confirm the desirable therapeutic effect on combating tumor. Especially, the iron and bismuth elemental components endow the nanocomposites with dual-mode computed tomography/magnetic resonance imaging ability, guaranteeing the potential therapeutic guidance and monitoring.

镧系元素特异性掺杂在空位工程压电催化剂中诱导溶酶体破坏和肿瘤细胞焦亡。
背景:活性氧(ROS)介导的焦亡为克服乳腺癌治疗中的细胞凋亡抵抗提供了强有力的策略。然而,低效率的焦亡仍然是一个不可否认的挑战。克服这一障碍需要创造创新的方法和纳米催化剂来促进活性氧的产生。本文通过对不同镧掺杂BiFeO3 (La- bfo)压电纳米酶的合理设计和工程化,通过诱导ROS的扩增产生和释放La离子来实现乳腺癌细胞的特异性焦亡。结果:La的引入通过缩小BFO的带隙和产生氧空位,降低了电子-空穴对的复合速率,提高了有害ROS的生成效率。重要的是,释放的La离子强有力地破坏溶酶体膜,最终诱导细胞焦亡,并结合ros诱导的生物学效应。结论:体外和体内抗肿瘤实验结果证实了其抗肿瘤的良好疗效。特别是铁元素和铋元素使纳米复合材料具有双模计算机断层扫描/磁共振成像能力,保证了潜在的治疗指导和监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信