Latif A Peer, Aijaz A Wani, Ajaz A Lone, Zahoor A Dar, Bilal A Mir
{"title":"Drought stress memory in maize: understanding and harnessing the past for future resilience.","authors":"Latif A Peer, Aijaz A Wani, Ajaz A Lone, Zahoor A Dar, Bilal A Mir","doi":"10.1007/s00299-025-03494-x","DOIUrl":null,"url":null,"abstract":"<p><p>Maize (Zea mays L.), a cornerstone of global food security, faces significant challenges due to drought stress, which disrupts its growth, development, and productivity. This review synthesizes advances in our understanding of drought stress memory, a mechanism that enables maize to \"remember\" prior drought exposure through transcriptional, epigenetic, and physiological pathways. Key regulators, including transcription factors (ZmEREB24 and ZmNF-YC12) and epigenetic modifications (DNA methylation and histone acetylation), orchestrate stress-responsive pathways that ensure rapid adaptation to recurrent drought events. Complementing these molecular mechanisms, physiological adaptations, such as optimized root and leaf architecture, enhanced water-use efficiency, and antioxidant defenses, further strengthen drought tolerance. Practical applications, including molecular priming techniques (e.g., osmopriming, hydropriming, nanoparticles) and advanced genetic tools (CRISPR/Cas9, GWAS), promise scalable solutions for breeding drought-resilient maize varieties. Despite this progress, challenges remain, including genotype-specific variability, scalability, and trade-offs between resilience and yield. This review provides a roadmap for integrating laboratory discoveries with field-level practices, bridging molecular and agronomic innovations to address climate variability and ensure sustainable maize production and global food security.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 5","pages":"101"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03494-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Maize (Zea mays L.), a cornerstone of global food security, faces significant challenges due to drought stress, which disrupts its growth, development, and productivity. This review synthesizes advances in our understanding of drought stress memory, a mechanism that enables maize to "remember" prior drought exposure through transcriptional, epigenetic, and physiological pathways. Key regulators, including transcription factors (ZmEREB24 and ZmNF-YC12) and epigenetic modifications (DNA methylation and histone acetylation), orchestrate stress-responsive pathways that ensure rapid adaptation to recurrent drought events. Complementing these molecular mechanisms, physiological adaptations, such as optimized root and leaf architecture, enhanced water-use efficiency, and antioxidant defenses, further strengthen drought tolerance. Practical applications, including molecular priming techniques (e.g., osmopriming, hydropriming, nanoparticles) and advanced genetic tools (CRISPR/Cas9, GWAS), promise scalable solutions for breeding drought-resilient maize varieties. Despite this progress, challenges remain, including genotype-specific variability, scalability, and trade-offs between resilience and yield. This review provides a roadmap for integrating laboratory discoveries with field-level practices, bridging molecular and agronomic innovations to address climate variability and ensure sustainable maize production and global food security.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.