Sarah W Gachie, Alexandre Muhire, Di Li, Akihiro Kawamoto, Noriko Takeda-Kamiya, Yumi Goto, Mayuko Sato, Kiminori Toyooka, Ryo Yoshimura, Tsuneaki Takami, Lingang Zhang, Genji Kurisu, Toru Terachi, Wataru Sakamoto
{"title":"The thylakoid membrane remodeling protein VIPP1 forms bundled oligomers in tobacco chloroplasts.","authors":"Sarah W Gachie, Alexandre Muhire, Di Li, Akihiro Kawamoto, Noriko Takeda-Kamiya, Yumi Goto, Mayuko Sato, Kiminori Toyooka, Ryo Yoshimura, Tsuneaki Takami, Lingang Zhang, Genji Kurisu, Toru Terachi, Wataru Sakamoto","doi":"10.1093/plphys/kiaf137","DOIUrl":null,"url":null,"abstract":"<p><p>The thylakoid membrane (TM) serves as the scaffold for oxygen-evolving photosynthesis, hosting the protein complexes responsible for the light reactions and ATP synthesis. Vesicle inducing protein in plastid 1 (VIPP1), a key protein in TM remodeling, has been recognized as essential for TM homeostasis. In vitro studies of cyanobacterial VIPP1 demonstrated its ability to form large homo-oligomers (2 MDa) manifesting as ring-like or filament-like assemblies associated with membranes. Similarly, VIPP1 in Chlamydomonas reinhardtii assembles into rods that encapsulate liposomes or into stacked spiral structures. However, the nature of VIPP1 assemblies in chloroplasts, particularly in Arabidopsis, remains uncharacterized. Here, we expressed Arabidopsis thaliana VIPP1 fused to GFP (AtVIPP1-GFP) in tobacco (Nicotiana tabacum) chloroplasts and performed transmission electron microscopy (TEM). A purified AtVIPP1-GFP fraction was enriched with long filamentous tubule-like structures. Detailed TEM observations of chloroplasts in fixed resin-embedded tissues identified VIPP1 assemblies in situ that appeared to colocalize with GFP fluorescence. Electron tomography demonstrated that the AtVIPP1 oligomers consisted of bundled filaments near membranes, some of which appeared connected to the TM or inner chloroplast envelope at their contact sites. The observed bundles were never detected in wild-type Arabidopsis but were observed in Arabidopsis vipp1 mutants expressing AtVIPP1-GFP. Taken together, we propose that the bundled filaments are the dominant AtVIPP1 oligomers that represent its static state in vivo.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"198 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf137","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The thylakoid membrane (TM) serves as the scaffold for oxygen-evolving photosynthesis, hosting the protein complexes responsible for the light reactions and ATP synthesis. Vesicle inducing protein in plastid 1 (VIPP1), a key protein in TM remodeling, has been recognized as essential for TM homeostasis. In vitro studies of cyanobacterial VIPP1 demonstrated its ability to form large homo-oligomers (2 MDa) manifesting as ring-like or filament-like assemblies associated with membranes. Similarly, VIPP1 in Chlamydomonas reinhardtii assembles into rods that encapsulate liposomes or into stacked spiral structures. However, the nature of VIPP1 assemblies in chloroplasts, particularly in Arabidopsis, remains uncharacterized. Here, we expressed Arabidopsis thaliana VIPP1 fused to GFP (AtVIPP1-GFP) in tobacco (Nicotiana tabacum) chloroplasts and performed transmission electron microscopy (TEM). A purified AtVIPP1-GFP fraction was enriched with long filamentous tubule-like structures. Detailed TEM observations of chloroplasts in fixed resin-embedded tissues identified VIPP1 assemblies in situ that appeared to colocalize with GFP fluorescence. Electron tomography demonstrated that the AtVIPP1 oligomers consisted of bundled filaments near membranes, some of which appeared connected to the TM or inner chloroplast envelope at their contact sites. The observed bundles were never detected in wild-type Arabidopsis but were observed in Arabidopsis vipp1 mutants expressing AtVIPP1-GFP. Taken together, we propose that the bundled filaments are the dominant AtVIPP1 oligomers that represent its static state in vivo.
类囊体膜(TM)作为进化氧光合作用的支架,承载负责光反应和ATP合成的蛋白质复合物。VIPP1 (Vesicle inducing protein in plas质体1)是TM重塑的关键蛋白,在TM内环境平衡中起重要作用。蓝藻VIPP1的体外研究表明,它能够形成大的同质寡聚物(2 MDa),表现为与膜相关的环状或丝状组装。类似地,莱茵衣藻中的VIPP1组装成包裹脂质体的棒状结构或堆叠的螺旋结构。然而,在叶绿体中,特别是在拟南芥中,VIPP1组装的性质仍然不清楚。本研究在烟草(Nicotiana tabacum)叶绿体中表达拟南芥(Arabidopsis thaliana) VIPP1与GFP融合(AtVIPP1-GFP),并进行透射电镜(TEM)观察。纯化的AtVIPP1-GFP片段富含长丝状小管状结构。对固定树脂包埋组织中叶绿体的详细透射电镜观察发现,VIPP1在原位似乎与GFP荧光共定位。电子断层扫描表明,AtVIPP1低聚物由靠近膜的束状细丝组成,其中一些细丝在其接触点与TM或叶绿体内包膜相连。在野生型拟南芥中从未检测到这些束,但在表达AtVIPP1-GFP的拟南芥vipp1突变体中观察到这些束。综上所述,我们认为束状细丝是主导的AtVIPP1低聚物,代表了其在体内的静态状态。
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.