Unresolved roles of Aux/IAA proteins in auxin responses.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Monika Kubalová, Martina Schmidtová, Matyáš Fendrych
{"title":"Unresolved roles of Aux/IAA proteins in auxin responses.","authors":"Monika Kubalová, Martina Schmidtová, Matyáš Fendrych","doi":"10.1111/ppl.70221","DOIUrl":null,"url":null,"abstract":"<p><p>Aux/IAA proteins are well-known as key components of the nuclear auxin signaling pathway, repressing gene transcription when present and enabling gene activation upon their degradation. In this review, we explore the additional roles of Aux/IAA proteins in the known auxin perception pathways-the TIR1/AFBs nuclear as well as in the emerging cytoplasmic and apoplastic pathways. We summarize recent advances in understanding the regulation of Aux/IAA protein stability at the post-translational level, a critical factor in auxin-regulated transcriptional output. We further highlight the roles of auxin-nondegradable non-canonical Aux/IAAs in auxin-mediated transcription and their involvement in apoplastic auxin signalling. Additionally, we discuss the importance of Aux/IAAs for the adenylate cyclase activity of TIR1/AFB receptors and speculate on their involvement in the cytoplasmic auxin pathway. Using Arabidopsis root as a model, this work underscores the central role of Aux/IAA proteins in mediating auxin-driven developmental processes and environmental responses. Key questions for future research are proposed to further unravel the dynamic roles of Aux/IAAs in auxin signaling networks.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70221"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70221","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aux/IAA proteins are well-known as key components of the nuclear auxin signaling pathway, repressing gene transcription when present and enabling gene activation upon their degradation. In this review, we explore the additional roles of Aux/IAA proteins in the known auxin perception pathways-the TIR1/AFBs nuclear as well as in the emerging cytoplasmic and apoplastic pathways. We summarize recent advances in understanding the regulation of Aux/IAA protein stability at the post-translational level, a critical factor in auxin-regulated transcriptional output. We further highlight the roles of auxin-nondegradable non-canonical Aux/IAAs in auxin-mediated transcription and their involvement in apoplastic auxin signalling. Additionally, we discuss the importance of Aux/IAAs for the adenylate cyclase activity of TIR1/AFB receptors and speculate on their involvement in the cytoplasmic auxin pathway. Using Arabidopsis root as a model, this work underscores the central role of Aux/IAA proteins in mediating auxin-driven developmental processes and environmental responses. Key questions for future research are proposed to further unravel the dynamic roles of Aux/IAAs in auxin signaling networks.

Aux/IAA蛋白在生长素反应中的作用尚未确定。
众所周知,Aux/IAA蛋白是核生长素信号通路的关键组成部分,当存在时抑制基因转录,并在其降解时使基因激活。在这篇综述中,我们探讨了Aux/IAA蛋白在已知的生长素感知途径- TIR1/AFBs核以及新兴的细胞质和外胞体途径中的其他作用。我们总结了在翻译后水平上理解Aux/IAA蛋白稳定性调控的最新进展,这是生长素调控转录输出的关键因素。我们进一步强调了生长素不可降解的非规范Aux/IAAs在生长素介导的转录中的作用及其参与外质体生长素信号传导。此外,我们讨论了Aux/IAAs对TIR1/AFB受体腺苷酸环化酶活性的重要性,并推测它们参与细胞质生长素途径。本研究以拟南芥根系为模型,强调了Aux/IAA蛋白在介导生长素驱动的发育过程和环境反应中的核心作用。进一步揭示Aux/IAAs在生长素信号网络中的动态作用是未来研究的关键问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信